Hypothesis Testing for Means
Lecture 33
Sections 10.1-10.2

Robb T. Koether
Hampden-Sydney College
Mon, Mar 22, 2010
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
A new method for detecting a type of cancer has been developed. Among 80 adults who have this type of cancer, this method failed to detect the cancer in five of the adults. Provide a 92% confidence interval estimate for the failure rate for this method.
A new method for detecting a type of cancer has been developed. Among 80 adults who have this type of cancer, this method failed to detect the cancer in five of the adults. Provide a 92% confidence interval estimate for the failure rate for this method.

- The sample proportion (point estimate) for the failure rate is

\[\hat{p} = \frac{5}{80} = 0.0625. \]
A new method for detecting a type of cancer has been developed. Among 80 adults who have this type of cancer, this method failed to detect the cancer in five of the adults. Provide a 92% confidence interval estimate for the failure rate for this method.

- The sample proportion (point estimate) for the failure rate is \(\hat{p} = \frac{5}{80} = 0.0625 \).
- For a 92% C.I., \(\alpha = 0.08 \), so \(\alpha/2 = 0.04 \).
A new method for detecting a type of cancer has been developed. Among 80 adults who have this type of cancer, this method failed to detect the cancer in five of the adults. Provide a 92% confidence interval estimate for the failure rate for this method.

- The sample proportion (point estimate) for the failure rate is $\hat{p} = \frac{5}{80} = 0.0625$.
- For a 92% C.I., $\alpha = 0.08$, so $\alpha/2 = 0.04$.
- The coefficient is $z_{0.04} = \text{invNorm}(0.04) = -1.751$.

The confidence interval is $\hat{p} \pm z_{0.04} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = 0.0625 \pm (1.751)\left(\frac{0.0625 \cdot 0.9375}{80}\right) = 0.0625 \pm 0.0474$.

Robb T. Koether (Hampden-Sydney College)

A new method for detecting a type of cancer has been developed. Among 80 adults who have this type of cancer, this method failed to detect the cancer in five of the adults. Provide a 92% confidence interval estimate for the failure rate for this method.

- The sample proportion (point estimate) for the failure rate is \(\hat{p} = \frac{5}{80} = 0.0625 \).
- For a 92% C.I., \(\alpha = 0.08 \), so \(\alpha/2 = 0.04 \).
- The coefficient is \(z_{0.04} = \text{invNorm}(0.04) = -1.751 \).
- So, the confidence interval is

\[
\hat{p} \pm z_{0.04} \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} = 0.0625 \pm 1.751 \sqrt{\frac{(0.0625)(0.9375)}{80}} \\
= 0.0625 \pm (1.751)(0.0271) \\
= 0.0625 \pm 0.0474.
\]
Solution

- Or you could use the TI-83 function $1 -$ PropZInt.
- Enter
 - $x = 5$.
 - $n = 80$.
 - C-Level $= 0.92$.
- The calculator reports the interval $(0.01512, 0.10988)$.
Outline

1. Homework Review

2. Introduction

3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion

4. Another Example

5. The TI-83

6. Assignment
We now ask the two basic questions, this time about the mean.
We now ask the two basic questions, this time about the mean.

- Is a given hypothesis concerning μ true?
We now ask the two basic questions, this time about the mean.

- Is a given hypothesis concerning μ true?
- What is the value of μ?
We now ask the two basic questions, this time about the mean.
- Is a given hypothesis concerning μ true?
- What is the value of μ?

In most ways, Chapter 10 will be like Chapter 9.
Introduction

- We now ask the two basic questions, this time about the mean.
 - Is a given hypothesis concerning μ true?
 - What is the value of μ?
- In most ways, Chapter 10 will be like Chapter 9.
- In one way, it will be very different.
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
2. State the significance level.
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
2. State the significance level.
3. State for formula for the test statistic.
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
2. State the significance level.
3. State the formula for the test statistic.
4. Compute the value of the test statistic.
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
2. State the significance level.
3. State for formula for the test statistic.
4. Compute the value of the test statistic.
5. Compute the p-value.
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
2. State the significance level.
3. State the formula for the test statistic.
4. Compute the value of the test statistic.
5. Compute the p-value.
6. State the decision.
The Seven Steps of Hypothesis Testing

1. State the null and alternative hypotheses.
2. State the significance level.
3. State the formula for the test statistic.
4. Compute the value of the test statistic.
5. Compute the p-value.
6. State the decision.
7. State the conclusion.
An Example

- In an attempt to determine whether the price for a gallon of regular gasoline is less than $2.70, a reporter samples 36 service stations.
- He finds an average price of $2.63.
- The population standard deviation σ is (somehow) known to be 0.12.
- At the 5% level of significance, test the hypothesis that the average price of a gallon of gasoline is less than 2.70.
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The \(p \)-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
The Hypotheses

- Tell what μ represents.
- The null hypothesis gives a hypothetical value μ_0 for the population mean.
 \[H_0 : \mu = \mu_0. \]
- The alternative hypothesis contradicts H_0 in one of three ways.
 - $H_1 : \mu < \mu_0$.
 - $H_1 : \mu > \mu_0$.
 - $H_1 : \mu \neq \mu_0$.

Robb T. Koether (Hampden-Sydney College)
The Hypotheses

Example (Step 1)

(1) Let μ represent the average price of a gallon of regular gas.

$H_0 : \mu = 2.70$

$H_1 : \mu < 2.70$
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
The Level of Significance

- State the level of significance (the value of α).
Example (Step 2)

(2) Let $\alpha = 0.05$.
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The \(p \)-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
The Test Statistic

- The choice of test statistic is where things get a little complicated.
- The choice will depend on the sample size and what is known about the population. (Details to follow.)
- If we assume that σ is known and that either
 - The sample size n is at least 30, or
 - The population is normal,
then the Central Limit Theorem for Means will apply, telling us that \bar{x} is normal with mean μ_0 (if H_0 is true) and standard deviation $\frac{\sigma}{\sqrt{n}}$.
The Sampling Distribution of \bar{x}

Therefore, the test statistic, for now, is

$$Z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}.$$
The Decision Tree

Is \(\sigma \) known?

- yes
- no
The Decision Tree

Is σ known?

- yes
- no

Is the population normal?

- yes
- no

Robb T. Koether (Hampden-Sydney College)
Hypothesis Testing for Means
Mon, Mar 22, 2010 21 / 50
The Decision Tree

Is σ known?

- yes
 - Is the population normal?
 - yes
 - $Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$
 - no

- no
 - Is the population normal?
 - yes
 - no
The Decision Tree

Is σ known?

- yes
 - Is the population normal?
 - yes
 - \(Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}} \)
 - no
 - no

- no
 - Is \(n \geq 30? \)
 - yes
 - no
The Decision Tree

Is σ known?

Is the population normal?

Is $n \geq 30$?

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

$$Z \approx \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$
The Decision Tree

Is σ known?

Is the population normal?

yes

no

Is $n \geq 30$?

yes

no

Give up

$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$

$Z \approx \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$
The Decision Tree

Is σ known?

yes

Is the population normal?

yes

$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$

no

Come back later

no

Is $n \geq 30$?

yes

$Z \approx \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$

no

Give up
Example (Step 3)

(3) Let the test statistic be

$$z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}.$$
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
Substitute the values of \bar{x}, μ_0, σ, and n into the formula to get the value of z.
Example (Step 4)

(4)

\[\mu_0 = 2.70. \]
\[\bar{x} = 2.63. \]
\[\sigma = 0.12. \]
\[n = 36. \]

Therefore,

\[z = \frac{2.63 - 2.70}{0.12/\sqrt{36}} = \frac{-0.07}{0.02} = -3.500. \]
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
The p-Value

- To find the p-value, use `normalcdf` on the TI-83.
- For one-tailed tests, compute either
 - p-value = `normalcdf(-E99, z)`, or
 - p-value = `normalcdf(z, E99)`.
- For a two-tailed test, compute the area of the appropriate tail, and then double it.
Example (Step 5)

(5) \(p\)-value = \text{normalcdf}(-E99, -3.5) = 2.328 \times 10^{-4}.\)
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
The Decision

- Reject the null hypothesis if the p-value is less than α.
- Otherwise, accept it.
- Write either “Reject H_0” or “Accept H_0.”
Example (Step 6)

(6) Reject H_0.

The Decision
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
State the conclusion in plain English, using the terminology of the original problem, not the statistical jargon.
Example (Step 7)

(7) The average price of a gallon of regular gasoline is less than $2.70.
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The \(p \)-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
Exercise

Let’s Do It! 10.2, page 620.

- Under normal circumstances, mice complete a maze in an average time of 18 seconds, with a standard deviation of 2 seconds.
- A researcher introduces loud noises. Will this cause the mice to run the maze faster?
- A sample of 10 mice has an average time of 17 seconds.
- Assume that their run times are normally distributed.
- The population standard deviation is known to be 2 seconds.
- Test the hypothesis at the 10% level that the average run time is less when there is loud noise.
Outline

1. Homework Review
2. Introduction
3. Hypothesis Testing for the Mean
 - The Hypotheses
 - The Level of Significance
 - The Test Statistic
 - The Value of the Test Statistic
 - The p-Value
 - The Decision
 - The Conclusion
4. Another Example
5. The TI-83
6. Assignment
TI-83 Hypothesis Testing for the Mean

- **Press** `STAT`.
- **Select** `TESTS`.
- **Select** `Z-Test`.
- **Press** `ENTER`. A window appears requesting information.
- **Select** `Data` if you have the sample data entered into a list.
- **Otherwise, select** `Stats`.
Hypothesis Testing on the TI-83

The Stats Option

- Enter μ_0, the hypothetical mean.
- Enter σ. (Remember, σ is known.)
- Enter \bar{x}.
- Enter n, the sample size.
- Select the type of alternative hypothesis.
- Select Calculate and press ENTER.
Hypothesis Testing on the TI-83
The Stats Option

TI-83 Hypothesis Testing for the Mean

- A window appears with the following information.
 - The title Z-Test.
 - The alternative hypothesis.
 - The value of the test statistic Z.
 - The p-value of the test.
 - The sample mean.
 - The sample size.
Assignment

Homework

- Read Sections 10.1 - 10.2, pages 613 - 620.
- Let’s Do It! 10.1, 10.2.
- Exercises 1 - 6, page 633.
2. $H_0 : \mu = 7$ vs. $H_1 : \mu < 7$.
μ represents the population mean time to complete the maze.

4. $z = 2.8$ and p-value $= 0.002555$. Reject H_0. The average IQ of girls at the alternative school is greater than 100.
6. (a) (Step 1) $H_0 : \mu = 32$ vs. $H_1 : \mu > 32$.
(b) (Steps 2 - 6.)

(2) $\alpha = 0.025$.
(3) $Z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$.
(4) $z = 8.275$.
(5) p-value $= 6.449 \times 10^{-17}$.
(6) Reject H_0.

(c) (Step 7) If the calories in their diet are replaced by vitamins and protein, then on the average mice will live longer than 32 months.