Definition	Concept
Reduced Row Echelon Form	Consistent and Inconsistent Linear Systems
Linear Algebra	Linear Algebra
DEFINITION	DEFINITION
Linear Combination	Linear Independence
Linear Algebra	Linear Algebra
Definition	DEFINITION & CONCEPT
Span	Linear Transformation
Linear Algebra	Linear Algebra
Definition	DEFINITION & CONCEPT
Standard Matrix	Onto
Linear Algebra	Linear Algebra
DEFINITION & CONCEPT	DEFINITION
One-to-One	Subspace
Linear Algebra	Linear Algebra

If a system has at least one solution, then it is said to be *consistent*. If a system has no solutions, then it is *inconsistent*.

A consistent system has either

- 1. exactly one solution (no free variables),
- 2. infinitely many solutions (because there is at least one free variable).

A matrix is in *reduced row echelon form* if all of the following conditions are satisfied:

- 1. If a row has nonzero entries, then the first nonzero entry (i.e., *pivot*) is 1.
- 2. If a column contains a pivot, then all other entries in that column are zero.
- 3. If a row contains a pivot, then each row above contains a pivot further to the left.

A set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ in \mathbb{R}^n is linearly independent if the only solution to the vector equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_m\mathbf{v}_p = \mathbf{0}$$

is the trivial solution (all constants equal zero). If there is a nontrivial solution, the vectors are linearly dependent.

A linear combination is a weighted sum of vectors (where the weights are scalars). For example, if c_1, \ldots, c_p are constants, then

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p$$

is a linear combination of $\mathbf{v}_1, \dots, \mathbf{v}_p$.

A function T that maps vectors from \mathbb{R}^n to \mathbb{R}^m is called a *linear transformation* if for all vectors \mathbf{x} , \mathbf{y} and scalars c,

- 1. $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y}),$
- 2. $T(c\mathbf{x}) = cT(\mathbf{x})$.

Every linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ has an m-by-n matrix A called the *standard matrix* of T such that $T(\mathbf{x}) = A\mathbf{x}$.

The span of a set of vectors $\mathbf{v}_1, \dots, \mathbf{v}_p$ is the set of all possible linear combinations of those vectors.

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is *onto* if every **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

If T has standard matrix A, then the following are equivalent.

- 1. T is onto,
- 2. The columns of A span \mathbb{R}^m ,
- 3. A has a pivot in every row.

The standard matrix of a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is an m-by-n matrix A such that $T(\mathbf{x}) = A\mathbf{x}$.

The i^{th} column A is $T(\mathbf{e}_i)$ where \mathbf{e}_i is the i^{th} elementary basis vector for \mathbb{R}^n .

A *subspace* is a subset of a vector space that is

- 1. Closed under addition, and
- 2. Closed under scalar multiplication.

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if every **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n .

If T has standard matrix A, then the following are equivalent.

- 1. T is one-to-one,
- 2. The columns of A are linearly independent,
- 3. A has a pivot in every column.

DEFINITION	DEFINITION & CONCEPT
Basis	Dimension
Linear Algebra	Linear Algebra
DEFINITION & CONCEPT	DEFINITION & CONCEPT
Rank	Column Space
Linear Algebra	Linear Algebra
DEFINITION	Theorem
Null Space	Rank + Nullity Theorem
Linear Algebra	Linear Algebra
DEFINITION	DEFINITION
Eigenvectors and Eigenvalues	Eigenspace
Linear Algebra	Linear Algebra
DEFINITION	Definition & Concept
Characteristic Polynomial	Diagonalizable
Linear Algebra	Linear Algebra

The dimension of a vector space V is the number of vectors in a basis for V . It is a theorem that all bases for a vector space have the same number of elements.	A $basis$ of a vector space V is set that is 1. Linearly independent, and 2. Spans V .
The column space of a matrix is the span of the columns of A . The column space is also the range of the linear transformation $T(\mathbf{x}) = A\mathbf{x}$.	The rank of a matrix is the number of pivots in the reduced row echelon form of the matrix. The rank of a matrix is also 1. The dimension of the column space. 2. The dimension of the row space.
For any m -by- n matrix A , the rank of A plus the nullity of A (number of pivots plus the number of free variables) is always n .	The <i>null space</i> of a matrix is the set of all vectors \mathbf{x} such that $A\mathbf{x} = 0$.
For a matrix A with eigenvalue λ , the eigenspace of A corresponding to λ is the set of all eigenvectors of A corresponding to λ .	For an n -by- n matrix A , a nonzero vector \mathbf{x} and a scalar λ are eigenvectors and eigenvalues (resp.) of A if $A\mathbf{x} = \lambda \mathbf{x}$.
A matrix A is diagonalizable if there is an invertible matrix P and a diagonal matrix D such that $A = PDP^{-1}$. The columns of P are eigenvectors of A and the diagonal entries of D are the eigenvalues of A .	For any square matrix A , the characteristic polynomial is $\det(A-\lambda I)$. The roots of the characteristic polynomial are the eigenvalues of A .

Definition	DEFINITION
Inner Product	Norm
Linear Algebra	Linear Algebra
DEFINITION	DEFINITION
Orthogonal and Orthonormal Sets	Orthogonal Complement
Linear Algebra	Linear Algebra
Theorem	THEOREM
Fundamental Theorem of Linear Algebra	Orthogonal Decomposition Theorem
Linear Algebra	Linear Algebra
Definition	DEFINITION & CONCEPT
Normal Equations	Orthogonal Matrix
Linear Algebra	Linear Algebra
Definition	DEFINITION & CONCEPT
Orthogonally Diagonalizable	Symmetric Matrix
Linear Algebra	Linear Algebra

The <i>norm</i> of a vector \mathbf{x} is $ \mathbf{x} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$. Norm is also known as length.	The inner product of two vectors \mathbf{x}, \mathbf{y} in \mathbb{R}^n is $\mathbf{x}^T \mathbf{y}$. It is also known as the dot-product $(\mathbf{x} \cdot \mathbf{y})$.
For any set of vectors W in \mathbb{R}^n , the orthogonal complement of W (denoted W^{\perp}) is the set of all vectors in \mathbb{R}^n orthogonal to everything in W . An orthogonal complement is always a subspace of \mathbb{R}^n .	A set of vectors is <i>orthogonal</i> if every vector in the set is orthogonal to every other vector in the set. A set of vectors is <i>orthonormal</i> if it is orthogonal and every vector in the set also has norm 1.
For any subspace W in \mathbb{R}^n and any vector \mathbf{y} in \mathbb{R}^n , there is a unique decomposition $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . We call the vector $\hat{\mathbf{y}}$ the <i>orthogonal projection</i> of \mathbf{y} onto W . It is the vector in W that is closest to \mathbf{y} .	For any m -by- n matrix A , 1. $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A$, 2. $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.
An n -by- n matrix Q is $orthogonal$ if the columns of Q are an orthonormal set. The inverse of an orthogonal matrix is its transpose: $Q^{-1}=Q^T.$	For an inconsistent linear system $A\mathbf{x} = \mathbf{b}$, you can find a least-squares solution by solving the normal equations for the system: $A^T A\mathbf{x} = A^T \mathbf{b}$ Note: If the columns of A are linearly independent, then $A^T A$ is invertible.
 A matrix A is symmetric if A^T = A. Symmetric matrices have the following properties. 1. All eigenvalues are real. 2. The matrix can be orthogonally diagonalized. 	A matrix A is orthogonally diagonalizable if there is an orthogonal matrix Q and a diagonal matrix D such that $A = QDQ^{-1}$. Matrices with real eigenvalues are orthogonally diagonalizable if and only if they are symmetric.