3.5 EXERCISES

For the following exercises, find $\frac{dy}{dx}$ for the given functions.

- 175. $y = x^2 \sec x + 1$
- 176. $y = 3\csc x + \frac{5}{x}$
- 177. $y = x^2 \cot x$
- 178. $y = x x^3 \sin x$
- 179. $y = \frac{\sec x}{x}$
- 180. $y = \sin x \tan x$
- 181. $y = (x + \cos x)(1 \sin x)$
- 182. $y = \frac{\tan x}{1 \sec x}$
- $183. \quad y = \frac{1 \cot x}{1 + \cot x}$
- 184. $y = \cos x (1 + \csc x)$

For the following exercises, find the equation of the tangent line to each of the given functions at the indicated values of x. Then use a calculator to graph both the function and the tangent line to ensure the equation for the tangent line is correct.

- 185. **[T]** $f(x) = -\sin x, x = 0$ 186. **[T]** $f(x) = \csc x, x = \frac{\pi}{2}$ 187. **[T]** $f(x) = 1 + \cos x, x = \frac{3\pi}{2}$ 188. **[T]** $f(x) = \sec x, x = \frac{\pi}{4}$
- 189. **[T]** $f(x) = x^2 \tan x \, x = 0$
- 190. **[T]** $f(x) = 5\cot x \, x = \frac{\pi}{4}$

For the following exercises, find $\frac{d^2 y}{dx^2}$ for the given functions.

191.
$$y = x \sin x - \cos x$$

192.
$$y = \sin x \cos x$$

193. $y = x - \frac{1}{2} \sin x$
194. $y = \frac{1}{x} + \tan x$
195. $y = 2 \csc x$
196. $y = \sec^2 x$

197. Find all *x* values on the graph of $f(x) = -3\sin x \cos x$ where the tangent line is horizontal.

198. Find all *x* values on the graph of $f(x) = x - 2\cos x$ for $0 < x < 2\pi$ where the tangent line has slope 2.

199. Let $f(x) = \cot x$. Determine the points on the graph of f for $0 < x < 2\pi$ where the tangent line(s) is (are) parallel to the line y = -2x.

200. **[T]** A mass on a spring bounces up and down in simple harmonic motion, modeled by the function $s(t) = -6\cos t$ where *s* is measured in inches and *t* is measured in seconds. Find the rate at which the spring is oscillating at t = 5 s.

201. Let the position of a swinging pendulum in simple harmonic motion be given by $s(t) = a\cos t + b\sin t$. Find the constants *a* and *b* such that when the velocity is 3 cm/s, s = 0 and t = 0.

202. After a diver jumps off a diving board, the edge of the board oscillates with position given by $s(t) = -5\cos t$

- cm at t seconds after the jump.
 - a. Sketch one period of the position function for $t \ge 0$.
 - b. Find the velocity function.
 - c. Sketch one period of the velocity function for $t \ge 0$.
 - d. Determine the times when the velocity is 0 over one period.
 - e. Find the acceleration function.
 - f. Sketch one period of the acceleration function for $t \ge 0$.