203. The number of hamburgers sold at a fast-food restaurant in Pasadena, California, is given by $y = 10 + 5 \sin x$ where *y* is the number of hamburgers sold and *x* represents the number of hours after the restaurant opened at 11 a.m. until 11 p.m., when the store closes. Find *y*' and determine the intervals where the number of burgers being sold is increasing.

204. **[T]** The amount of rainfall per month in Phoenix, Arizona, can be approximated by $y(t) = 0.5 + 0.3 \cos t$,

where t is months since January. Find y' and use a calculator to determine the intervals where the amount of rain falling is decreasing.

For the following exercises, use the quotient rule to derive the given equations.

$$205. \quad \frac{d}{dx}(\cot x) = -\csc^2 x$$

206.
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$

207.
$$\frac{d}{dx}(\csc x) = -\csc x \cot x$$

208. Use the definition of derivative and the identity $\cos(x + h) = \cos x \cos h - \sin x \sin h$ to prove that $\frac{d(\cos x)}{dx} = -\sin x$.

For the following exercises, find the requested higher-order derivative for the given functions.

209.
$$\frac{d^3 y}{dx^3}$$
 of $y = 3\cos x$

210.
$$\frac{d^2 y}{dx^2}$$
 of $y = 3\sin x + x^2 \cos x$

211.
$$\frac{d^4 y}{dx^4} \text{ of } y = 5\cos x$$

212.
$$\frac{d^2 y}{dx^2}$$
 of $y = \sec x + \cot x$

213.
$$\frac{d^3 y}{dx^3}$$
 of $y = x^{10} - \sec x$

286