
3.6 EXERCISES
For the following exercises, given y = f (u) and

u = g(x), find
dy
dx by using Leibniz’s notation for the

chain rule:
dy
dx = dy

du
du
dx .

214. y = 3u − 6, u = 2x2

215. y = 6u3, u = 7x − 4

216. y = sinu, u = 5x − 1

217. y = cosu, u = −x
8

218. y = tanu, u = 9x + 2

219. y = 4u + 3, u = x2 − 6x

For each of the following exercises,

a. decompose each function in the form y = f (u)
and u = g(x), and

b. find
dy
dx as a function of x.

220. y = (3x − 2)6

221. y = ⎛
⎝3x2 + 1⎞

⎠
3

222. y = sin5 (x)

223. y = ⎛
⎝x7 + 7

x
⎞
⎠
7

224. y = tan(secx)

225. y = csc(πx + 1)

226. y = cot2 x

227. y = −6sin−3 x

For the following exercises, find
dy
dx for each function.

228. y = ⎛
⎝3x2 + 3x − 1⎞

⎠
4

229. y = (5 − 2x)−2

230. y = cos3 (πx)

231. y = ⎛
⎝2x3 − x2 + 6x + 1⎞

⎠
3

232. y = 1
sin2(x)

233. y = (tanx + sinx)−3

234. y = x2 cos4 x

235. y = sin(cos7x)

236. y = 6 + secπx2

237. y = cot3 (4x + 1)

238. Let y = ⎡
⎣ f (x)⎤

⎦
3 and suppose that f ′ (1) = 4 and

dy
dx = 10 for x = 1. Find f (1).

239. Let y = ⎛
⎝ f (x) + 5x2⎞

⎠
4

and suppose that

f (−1) = −4 and
dy
dx = 3 when x = −1. Find f ′ (−1)

240. Let y = ⎛
⎝ f (u) + 3x⎞

⎠
2 and u = x3 − 2x. If

f (4) = 6 and
dy
dx = 18 when x = 2, find f ′ (4).

241. ��� Find the equation of the tangent line to

y = −sin⎛
⎝x2

⎞
⎠ at the origin. Use a calculator to graph the

function and the tangent line together.

242. ��� Find the equation of the tangent line to

y = ⎛
⎝3x + 1

x
⎞
⎠
2

at the point (1, 16). Use a calculator to

graph the function and the tangent line together.

243. Find the x -coordinates at which the tangent line to

y = ⎛
⎝x − 6

x
⎞
⎠
8

is horizontal.

244. ��� Find an equation of the line that is normal to

g(θ) = sin2 (πθ) at the point ⎛
⎝1
4, 1

2
⎞
⎠. Use a calculator to

graph the function and the normal line together.

For the following exercises, use the information in the
following table to find h′(a) at the given value for a.
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