x	f(x)	f'(x)	g(x)	g'(x)
0	2	5	0	2
1	1	-2	3	0
2	4	4	1	-1
3	3	-3	2	3

- 245. h(x) = f(g(x)); a = 0
- 246. h(x) = g(f(x)); a = 0

247.
$$h(x) = (x^4 + g(x))^{-2}; a = 1$$

248.
$$h(x) = \left(\frac{f(x)}{g(x)}\right)^2; a = 3$$

249.
$$h(x) = f(x + f(x)); a = 1$$

250.
$$h(x) = (1 + g(x))^3; a = 2$$

251.
$$h(x) = g(2 + f(x^2)); a = 1$$

252.
$$h(x) = f(g(\sin x)); a = 0$$

253. **[T]** The position function of a freight train is given by $s(t) = 100(t + 1)^{-2}$, with *s* in meters and *t* in seconds. At time t = 6 s, find the train's

- a. velocity and
- b. acceleration.
- c. Using a. and b. is the train speeding up or slowing down?

254. **[T]** A mass hanging from a vertical spring is in simple harmonic motion as given by the following position function, where t is measured in seconds and s is in

inches: $s(t) = -3\cos\left(\pi t + \frac{\pi}{4}\right)$.

- a. Determine the position of the spring at t = 1.5 s.
- b. Find the velocity of the spring at t = 1.5 s.

255. **[T]** The total cost to produce *x* boxes of Thin Mint Girl Scout cookies is *C* dollars, where $C = 0.0001x^3 - 0.02x^2 + 3x + 300$. In *t* weeks production is estimated to be x = 1600 + 100t boxes.

- a. Find the marginal cost C'(x).
- b. Use Leibniz's notation for the chain rule, $\frac{dC}{dt} = \frac{dC}{dx} \cdot \frac{dx}{dt}$, to find the rate with respect to time *t* that the cost is changing.
- c. Use b. to determine how fast costs are increasing when t = 2 weeks. Include units with the answer.

256. **[T]** The formula for the area of a circle is $A = \pi r^2$, where *r* is the radius of the circle. Suppose a circle is expanding, meaning that both the area *A* and the radius *r* (in inches) are expanding.

a. Suppose $r = 2 - \frac{100}{(t+7)^2}$ where *t* is time in seconds. Use the chain rule $\frac{dA}{dt} = \frac{dA}{dr} \cdot \frac{dr}{dt}$ to find

the rate at which the area is expanding.

b. Use a. to find the rate at which the area is expanding at t = 4 s.

257. **[T]** The formula for the volume of a sphere is $S = \frac{4}{3}\pi r^3$, where *r* (in feet) is the radius of the sphere.

Suppose a spherical snowball is melting in the sun.

a. Suppose $r = \frac{1}{(t+1)^2} - \frac{1}{12}$ where *t* is time in

minutes. Use the chain rule $\frac{dS}{dt} = \frac{dS}{dr} \cdot \frac{dr}{dt}$ to find the rate at which the snowball is melting.

b. Use a. to find the rate at which the volume is changing at t = 1 min.

258. **[T]** The daily temperature in degrees Fahrenheit of Phoenix in the summer can be modeled by the function $T(x) = 94 - 10\cos\left[\frac{\pi}{12}(x-2)\right]$, where *x* is hours after midnight. Find the rate at which the temperature is changing at 4 p.m.

259. **[T]** The depth (in feet) of water at a dock changes with the rise and fall of tides. The depth is modeled by the function $D(t) = 5\sin\left(\frac{\pi}{6}t - \frac{7\pi}{6}\right) + 8$, where *t* is the number of hours after midnight. Find the rate at which the depth is changing at 6 a.m.

298