3.8 EXERCISES

For the following exercises, use implicit differentiation to find $\frac{dy}{dx}$.

- 300. $x^2 y^2 = 4$
- 301. $6x^2 + 3y^2 = 12$
- 302. $x^2 y = y 7$
- 303. $3x^3 + 9xy^2 = 5x^3$
- $304. \quad xy \cos(xy) = 1$
- 305. $y\sqrt{x+4} = xy+8$
- 306. $-xy 2 = \frac{x}{7}$
- 307. $y\sin(xy) = y^2 + 2$
- 308. $(xy)^2 + 3x = y^2$
- 309. $x^3y + xy^3 = -8$

For the following exercises, find the equation of the tangent line to the graph of the given equation at the indicated point. Use a calculator or computer software to graph the function and the tangent line.

- 310. **[T]** $x^4 y xy^3 = -2$, (-1, -1)311. **[T]** $x^2 y^2 + 5xy = 14$, (2, 1)
- 312. **[T]** $\tan(xy) = y, \left(\frac{\pi}{4}, 1\right)$
- 313. **[T]** $xy^2 + \sin(\pi y) 2x^2 = 10, (2, -3)$
- 314. **[T]** $\frac{x}{y} + 5x 7 = -\frac{3}{4}y$, (1, 2)
- 315. **[T]** $xy + \sin(x) = 1, \left(\frac{\pi}{2}, 0\right)$

316. **[T]** The graph of a folium of Descartes with equation $2x^3 + 2y^3 - 9xy = 0$ is given in the following graph.

- a. Find the equation of the tangent line at the point (2, 1). Graph the tangent line along with the folium.
- b. Find the equation of the normal line to the tangent line in a. at the point (2, 1).
- 317. For the equation $x^2 + 2xy 3y^2 = 0$,
 - a. Find the equation of the normal to the tangent line at the point (1, 1).
 - b. At what other point does the normal line in a. intersect the graph of the equation?

318. Find all points on the graph of $y^3 - 27y = x^2 - 90$ at which the tangent line is vertical.

- 319. For the equation $x^2 + xy + y^2 = 7$,
 - a. Find the *x*-intercept(s).
 - b. Find the slope of the tangent line(s) at the *x*-intercept(s).
 - c. What does the value(s) in b. indicate about the tangent line(s)?

320. Find the equation of the tangent line to the graph of the equation $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{6}$ at the point $\left(0, \frac{1}{2}\right)$.

321. Find the equation of the tangent line to the graph of the equation $\tan^{-1}(x + y) = x^2 + \frac{\pi}{4}$ at the point (0, 1).

322. Find y' and y'' for $x^2 + 6xy - 2y^2 = 3$.