Chapter 3 | Derivatives 339

differentiable at 0, this function is differentiable everywhere and there is a formula for its derivative.

• We can use a formula to find the derivative of $y = \ln x$, and the relationship $\log_b x = \frac{\ln x}{\ln b}$ allows us to extend our differentiation formulas to include logarithms with arbitrary bases.

• Logarithmic differentiation allows us to differentiate functions of the form $y = g(x)^{f(x)}$ or very complex functions by taking the natural logarithm of both sides and exploiting the properties of logarithms before differentiating.

CHAPTER 3 REVIEW EXERCISES

True or False? Justify the answer with a proof or a counterexample.

367. Every function has a derivative.

368. A continuous function has a continuous derivative.

369. A continuous function has a derivative.

370. If a function is differentiable, it is continuous.

Use the limit definition of the derivative to exactly evaluate the derivative.

371.
$$f(x) = \sqrt{x+4}$$

372.
$$f(x) = \frac{3}{x}$$

Find the derivatives of the following functions.

373.
$$f(x) = 3x^3 - \frac{4}{x^2}$$

374.
$$f(x) = (4 - x^2)^3$$

375.
$$f(x) = e^{\sin x}$$

376.
$$f(x) = \ln(x+2)$$

377.
$$f(x) = x^2 \cos x + x \tan(x)$$

378.
$$f(x) = \sqrt{3x^2 + 2}$$

379.
$$f(x) = \frac{x}{4}\sin^{-1}(x)$$

380.
$$x^2 y = (y + 2) + xy\sin(x)$$

Find the following derivatives of various orders.

381. First derivative of $y = x \ln(x) \cos x$

382. Third derivative of $y = (3x + 2)^2$

383. Second derivative of $y = 4^x + x^2 \sin(x)$

Find the equation of the tangent line to the following equations at the specified point.

384.
$$y = \cos^{-1}(x) + x$$
 at $x = 0$

385.
$$y = x + e^x - \frac{1}{x}$$
 at $x = 1$

Draw the derivative for the following graphs.

386.

387.

The following questions concern the water level in Ocean City, New Jersey, in January, which can be approximated by $w(t) = 1.9 + 2.9\cos\left(\frac{\pi}{6}t\right)$, where t is measured in

hours after midnight, and the height is measured in feet.

388. Find and graph the derivative. What is the physical meaning?