## **5.1 EXERCISES**

1. State whether the given sums are equal or unequal.

a. 
$$\sum_{i=1}^{10} i \text{ and } \sum_{k=1}^{10} k$$
  
b. 
$$\sum_{i=1}^{10} i \text{ and } \sum_{i=6}^{15} (i-5)$$
  
c. 
$$\sum_{i=1}^{10} i(i-1) \text{ and } \sum_{j=0}^{9} (j+1)j$$
  
d. 
$$\sum_{i=1}^{10} i(i-1) \text{ and } \sum_{k=1}^{10} (k^2 - k)$$

In the following exercises, use the rules for sums of powers of integers to compute the sums.

2. 
$$\sum_{i=5}^{10} i$$
  
3.  $\sum_{i=5}^{10} i^2$ 

Suppose that  $\sum_{i=1}^{100} a_i = 15$  and  $\sum_{i=1}^{100} b_i = -12$ . In the following exercises, compute the sums.

4. 
$$\sum_{i=1}^{100} (a_i + b_i)$$

5. 
$$\sum_{i=1}^{100} (a_i - b_i)$$

6. 
$$\sum_{i=1}^{100} (3a_i - 4b_i)$$

7. 
$$\sum_{i=1}^{100} (5a_i + 4b_i)$$

- -

In the following exercises, use summation properties and formulas to rewrite and evaluate the sums.

8. 
$$\sum_{k=1}^{20} 100(k^2 - 5k + 1)$$
  
9. 
$$\sum_{j=1}^{50} (j^2 - 2j)$$

10. 
$$\sum_{j=11}^{20} (j^2 - 10j)$$
  
11. 
$$\sum_{k=1}^{25} [(2k)^2 - 100k]$$

Let  $L_n$  denote the left-endpoint sum using *n* subintervals and let  $R_n$  denote the corresponding right-endpoint sum. In the following exercises, compute the indicated left and right sums for the given functions on the indicated interval.

- 12.  $L_4$  for  $f(x) = \frac{1}{x-1}$  on [2, 3]
- 13.  $R_4$  for  $g(x) = \cos(\pi x)$  on [0, 1]

14. 
$$L_6$$
 for  $f(x) = \frac{1}{x(x-1)}$  on [2, 5]

15.  $R_6$  for  $f(x) = \frac{1}{x(x-1)}$  on [2, 5]

16. 
$$R_4$$
 for  $\frac{1}{x^2 + 1}$  on [-2, 2]

17. 
$$L_4$$
 for  $\frac{1}{x^2 + 1}$  on  $[-2, 2]$ 

18. 
$$R_4$$
 for  $x^2 - 2x + 1$  on [0, 2]

19.  $L_8$  for  $x^2 - 2x + 1$  on [0, 2]

20. Compute the left and right Riemann sums— $L_4$  and  $R_4$ , respectively—for f(x) = (2 - |x|) on [-2, 2]. Compute their average value and compare it with the area under the graph of f.

21. Compute the left and right Riemann sums— $L_6$  and  $R_6$ , respectively—for f(x) = (3 - |3 - x|) on [0, 6]. Compute their average value and compare it with the area under the graph of f.

22. Compute the left and right Riemann sums— $L_4$  and  $R_4$ , respectively—for  $f(x) = \sqrt{4 - x^2}$  on [-2, 2] and compare their values.

23. Compute the left and right Riemann sums— $L_6$  and  $R_6$ , respectively—for  $f(x) = \sqrt{9 - (x - 3)^2}$  on [0, 6] and compare their values.

Express the following endpoint sums in sigma notation but do not evaluate them.