Chapter 5 | Integration

162. The graph of $y = \int_0^x \ell(t)dt$, where ℓ is a piecewise

linear function, is shown here.

- a. Over which intervals is ℓ positive? Over which intervals is it negative? Over which, if any, is it zero?
- b. Over which intervals is ℓ increasing? Over which is it decreasing? Over which, if any, is it constant?
- c. What is the average value of ℓ ?

163. The graph of $y = \int_0^x \ell(t)dt$, where ℓ is a piecewise

linear function, is shown here.

- a. Over which intervals is ℓ positive? Over which intervals is it negative? Over which, if any, is it zero?
- b. Over which intervals is ℓ increasing? Over which is it decreasing? Over which intervals, if any, is it constant?
- c. What is the average value of ℓ ?

In the following exercises, use a calculator to estimate the area under the curve by computing T_{10} , the average of the left- and right-endpoint Riemann sums using N=10 rectangles. Then, using the Fundamental Theorem of Calculus, Part 2, determine the exact area.

164. **[T]**
$$y = x^2$$
 over $[0, 4]$

165. **[T]**
$$y = x^3 + 6x^2 + x - 5$$
 over [-4, 2]

166. **[T]**
$$y = \sqrt{x^3}$$
 over [0, 6]

167. **[T]**
$$y = \sqrt{x} + x^2$$
 over [1, 9]

168. **[T]**
$$\int (\cos x - \sin x) dx$$
 over $[0, \pi]$

169. **[T]**
$$\int \frac{4}{x^2} dx$$
 over [1, 4]

In the following exercises, evaluate each definite integral using the Fundamental Theorem of Calculus, Part 2.

170.
$$\int_{-1}^{2} (x^2 - 3x) dx$$

171.
$$\int_{-2}^{3} (x^2 + 3x - 5) dx$$

172.
$$\int_{-2}^{3} (t+2)(t-3)dt$$

173.
$$\int_{2}^{3} (t^2 - 9)(4 - t^2)dt$$

174.
$$\int_{1}^{2} x^{9} dx$$

175.
$$\int_0^1 x^{99} dx$$

176.
$$\int_{4}^{8} (4t^{5/2} - 3t^{3/2})dt$$

177.
$$\int_{1/4}^{4} \left(x^2 - \frac{1}{x^2} \right) dx$$

178.
$$\int_{1}^{2} \frac{2}{x^3} dx$$

$$179. \quad \int_{1}^{4} \frac{1}{2\sqrt{x}} dx$$

180.
$$\int_{1}^{4} \frac{2 - \sqrt{t}}{t^2} dt$$

181.
$$\int_{1}^{16} \frac{dt}{t^{1/4}}$$

182.
$$\int_{0}^{2\pi} \cos\theta d\theta$$

183.
$$\int_{0}^{\pi/2} \sin\theta d\theta$$