620 Chapter 5 | Integration

5.6 Integrals Involving Exponential and Logarithmic Functions

 Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and decay.

• Substitution is often used to evaluate integrals involving exponential functions or logarithms.

5.7 Integrals Resulting in Inverse Trigonometric Functions

- Formulas for derivatives of inverse trigonometric functions developed in Derivatives of Exponential and Logarithmic Functions lead directly to integration formulas involving inverse trigonometric functions.
- Use the formulas listed in the rule on integration formulas resulting in inverse trigonometric functions to match up the correct format and make alterations as necessary to solve the problem.
- Substitution is often required to put the integrand in the correct form.

CHAPTER 5 REVIEW EXERCISES

True or False. Justify your answer with a proof or a counterexample. Assume all functions f and g are continuous over their domains.

439. If f(x) > 0, f'(x) > 0 for all x, then the right-hand rule underestimates the integral $\int_a^b f(x)$. Use a graph to justify your answer.

440.
$$\int_{a}^{b} f(x)^{2} dx = \int_{a}^{b} f(x) dx \int_{a}^{b} f(x) dx$$

441. If
$$f(x) \le g(x)$$
 for all $x \in [a, b]$, the
$$\int_a^b f(x) \le \int_a^b g(x).$$

442. All continuous functions have an antiderivative.

Evaluate the Riemann sums L_4 and R_4 for the following functions over the specified interval. Compare your answer with the exact answer, when possible, or use a calculator to determine the answer.

443.
$$y = 3x^2 - 2x + 1$$
 over $[-1, 1]$

444.
$$y = \ln(x^2 + 1)$$
 over $[0, e]$

445.
$$y = x^2 \sin x$$
 over $[0, \pi]$

446.
$$y = \sqrt{x} + \frac{1}{x}$$
 over [1, 4]

Evaluate the following integrals.

447.
$$\int_{-1}^{1} (x^3 - 2x^2 + 4x) dx$$

448.
$$\int_{0}^{4} \frac{3t}{\sqrt{1+6t^2}} dt$$

449.
$$\int_{\pi/3}^{\pi/2} 2\sec(2\theta)\tan(2\theta)d\theta$$

450.
$$\int_{0}^{\pi/4} e^{\cos^2 x} \sin x \cos dx$$

Find the antiderivative.

451.
$$\int \frac{dx}{(x+4)^3}$$

$$452. \quad \int x \ln(x^2) dx$$

$$453. \quad \int \frac{4x^2}{\sqrt{1-x^6}} dx$$

454.
$$\int \frac{e^{2x}}{1 + e^{4x}} dx$$

Find the derivative.

$$455. \quad \frac{d}{dt} \int_{0}^{t} \frac{\sin x}{\sqrt{1+x^2}} dx$$