Math 142 - Midterm 1 Recap Problems

Name: _____

Each of these problems is worth 1% of the points you lost on Midterm 1. Take your time and do as many as you can. You may use a computer and/or ask me for help. There is no partial credit, so check your answers carefully. Due: Mon, Oct 8.

1. Find the area between the curves $y = x^2$ and $y = -x^2 + 18x$.

2. Find the area of the region between $y = e^x$, $y = e^{2x-1}$, and x = 0.

3. Solve $\ln x - \ln(x - 2) = \ln 3$.

4. Find the inverse of the function $f(x) = 1 - 2^{-x}$.

5. Simplify $\log_2 400 - \log_2 25$.

6.
$$\frac{d}{dx} \arccos(3x^3)$$

7.
$$\frac{d}{dy}e^y \ln y$$
.

8.
$$\frac{d}{dx}\exp{\left(4/x^3\right)}.$$

9.
$$\frac{d}{dx}\sin\left(\sqrt{1-e^x}\right)$$
.

10.
$$\frac{d}{dt}\ln\left(\frac{\sqrt{t}}{t}\right)$$
.

11. Use logarithmic differentiation to find y' when $y = \frac{e^x \sqrt{x}}{x^2 + 1}$.

12. Use logarithmic differentiation to find y' when $y = x^{\pi} \pi^{x}$.

13. Differentiate
$$y = \ln\left(\frac{x^2(x+1)(x-3)}{x+4}\right)$$
.

14. Differentiate $y = \log_5(5x^2)$.

15. Differentiate $y = 4^{2x+3}$.

16. Solve the differential equation $\frac{dr}{ds} = \frac{3r}{4}$.

17. Solve the differential equation $\sqrt{x} + \sqrt{y}y' = 0$.

18. Find the particular solution of the differential equation $\sqrt{x} + \sqrt{y}y' = 0$ that satisfies the initial condition y(1) = 9.

19. Translate this sentence into a differential equation. The rate of change of the velocity v with respect to time t is directly proportional to the velocity squared.

20. Solve the differential equation in the last problem.

21. Integrate $\int u \sin(u^2) du$.

22. Integrate
$$\int_0^2 \frac{2x}{\sqrt{5+x^2}} \, dx.$$

23. Integrate
$$\int \frac{\cos(\ln x)}{x} dx$$

24. Integrate $\int (\sin \theta - \cos \theta)^3 (\cos \theta + \sin \theta) d\theta$.

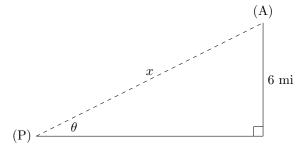
25. Integrate $\int_0^{\pi/4} \frac{\sin\theta}{\cos^4\theta} \, d\theta.$

27. Compute $\operatorname{arcsec}(-2)$.

28. Compute $\cos(\arctan(\sqrt{3}))$.

29. Integrate
$$\int_0^2 \frac{dx}{\sqrt{4-x^2}}$$
. Simplify your answer.

30. An airplane (A) flies at an altitude of 6 miles toward a person standing on the ground (P). If the distance from the airplane to the person is x, find a formula for the angle θ in the figure below.



31. Integrate $\int 5^{2x} dx$ by using the fact that $5^{2x} = e^{2x \ln 5}$.

32. Integrate $\int 5^{2x} dx$ by using the fact that $5^{2x} = (5^2)^x = 25^x$.

33.
$$\frac{d}{dx}\ln(\ln x)$$
.

34. Use logarithmic differentiation to find the derivative of $y = x^{-\ln x}$.

35. Use your answer to the last problem to find the x-value where the function $y = x^{-\ln x}$ has a maximum. Graph the function to check your answer.

36. Suppose that a certain population P is growing according to the differential equation $\frac{dP}{dt} = \frac{1}{4}P(2-P)$. Make a slope field for this differential equation and use it to describe in words what will happen to the population in the long run if P(0) = 0.5.

37. Use Euler's method with 5 steps and $\Delta x = 0.4$ to approximate the solution of the differential equation $y' = \frac{1}{2}x(3-y)$ if y(0) = 1. Complete the following table of values (accurate to two decimal places):

x	0.0	0.4	0.8	1.2	1.6	2.0
y	1.0					

38. Copy or print out and attach your computer code for the last problem.

39. Initially the temperature of an object is 60°C. The temperature of the object is changing at the rate given by the differential equation $\frac{dy}{dt} = -\frac{1}{2}(y-20)$ where y is temperature in °C and time t is measured in hours. Use Euler's method with 100 steps to estimate the temperature after 1 hour.

40. Copy or print out and attach your computer code for the last problem.