Math 142 - Midterm 1 Recap Problems

Each of these problems is worth 1% of the points you lost on Midterm 1. Take your time and do as many as you can. You may use a computer and/or ask me for help. There is no partial credit, so check your answers carefully. Due: Mon, Oct 8.

1. Find the area between the curves $y=x^{2}$ and $y=-x^{2}+18 x$.
2. Find the area of the region between $y=e^{x}, y=e^{2 x-1}$, and $x=0$.
3. Solve $\ln x-\ln (x-2)=\ln 3$.
4. Find the inverse of the function $f(x)=1-2^{-x}$.
5. Simplify $\log _{2} 400-\log _{2} 25$.
6. $\frac{d}{d x} \arccos \left(3 x^{3}\right)$.
7. $\frac{d}{d y} e^{y} \ln y$.
8. $\frac{d}{d x} \exp \left(4 / x^{3}\right)$.
9. $\frac{d}{d x} \sin \left(\sqrt{1-e^{x}}\right)$.
10. $\frac{d}{d t} \ln \left(\frac{\sqrt{t}}{t}\right)$.
11. Use logarithmic differentiation to find y^{\prime} when $y=\frac{e^{x} \sqrt{x}}{x^{2}+1}$.
12. Use logarithmic differentiation to find y^{\prime} when $y=x^{\pi} \pi^{x}$.
13. Differentiate $y=\ln \left(\frac{x^{2}(x+1)(x-3)}{x+4}\right)$.
14. Differentiate $y=\log _{5}\left(5 x^{2}\right)$.
15. Differentiate $y=4^{2 x+3}$.
16. Solve the differential equation $\frac{d r}{d s}=\frac{3 r}{4}$.
17. Solve the differential equation $\sqrt{x}+\sqrt{y} y^{\prime}=0$.
18. Find the particular solution of the differential equation $\sqrt{x}+\sqrt{y} y^{\prime}=0$ that satisfies the initial condition $y(1)=9$.
19. Translate this sentence into a differential equation. The rate of change of the velocity v with respect to time t is directly proportional to the velocity squared.
20. Solve the differential equation in the last problem.
21. Integrate $\int u \sin \left(u^{2}\right) d u$.
22. Integrate $\int_{0}^{2} \frac{2 x}{\sqrt{5+x^{2}}} d x$.
23. Integrate $\int \frac{\cos (\ln x)}{x} d x$.
24. Integrate $\int(\sin \theta-\cos \theta)^{3}(\cos \theta+\sin \theta) d \theta$.
25. Integrate $\int_{0}^{\pi / 4} \frac{\sin \theta}{\cos ^{4} \theta} d \theta$.
26. Compute $\arctan \left(\frac{\sqrt{3}}{3}\right)$.
27. Compute $\operatorname{arcsec}(-2)$.
28. Compute $\cos (\arctan (\sqrt{3}))$.
29. Integrate $\int_{0}^{2} \frac{d x}{\sqrt{4-x^{2}}}$. Simplify your answer.
30. An airplane (A) flies at an altitude of 6 miles toward a person standing on the ground (P). If the distance from the airplane to the person is x, find a formula for the angle θ in the figure below.

31. Integrate $\int 5^{2 x} d x$ by using the fact that $5^{2 x}=e^{2 x \ln 5}$.
32. Integrate $\int 5^{2 x} d x$ by using the fact that $5^{2 x}=\left(5^{2}\right)^{x}=25^{x}$.
33. $\frac{d}{d x} \ln (\ln x)$.
34. Use logarithmic differentiation to find the derivative of $y=x^{-\ln x}$.
35. Use your answer to the last problem to find the x -value where the function $y=x^{-\ln x}$ has a maximum. Graph the function to check your answer.
36. Suppose that a certain population P is growing according to the differential equation $\frac{d P}{d t}=\frac{1}{4} P(2-P)$. Make a slope field for this differential equation and use it to describe in words what will happen to the population in the long run if $P(0)=0.5$.
37. Use Euler's method with 5 steps and $\Delta x=0.4$ to approximate the solution of the differential equation $y^{\prime}=\frac{1}{2} x(3-y)$ if $y(0)=1$. Complete the following table of values (accurate to two decimal places):

x	0.0	0.4	0.8	1.2	1.6	2.0
y	1.0					

38. Copy or print out and attach your computer code for the last problem.
39. Initially the temperature of an object is $60^{\circ} \mathrm{C}$. The temperature of the object is changing at the rate given by the differential equation $\frac{d y}{d t}=-\frac{1}{2}(y-20)$ where y is temperature in ${ }^{\circ} \mathrm{C}$ and time t is measured in hours. Use Euler's method with 100 steps to estimate the temperature after 1 hour.
40. Copy or print out and attach your computer code for the last problem.
