Infinite Series

Geometric Series

- Standard Form $\sum_{n=0}^{\infty} ar^n$ where *a* is the first term, and *r* is the common ratio.
- Test for Convergence A geometric series converges if |r| < 1, otherwise it diverges.
- Formula for the Sum $\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$ if the geometric series converges.
- Example Zeno's series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots = 1$. Converges because the common ratio $r = \frac{1}{2}$.

p-Series

- Standard Form $\sum_{n=1}^{\infty} \frac{1}{n^p}$ where p is a constant.
- Test for Convergence (p-Test) A p-series converges if p > 1, otherwise it diverges.
- Example 1 Harmonic series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ Diverges by the *p*-test because p = 1.
- Example 2 Basel series $1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots = \frac{\pi^2}{6}$. Converges by the *p*-test because p = 2.

Alternating Series

- Standard Form $\sum_{n=0}^{\infty} (-1)^n b_n$ where each $b_n > 0$.
- Test for Convergence (Alternating Series Test) An alternating series converges if
 - 1. $b_{n+1} \leq b_n$ for all n (decreasing), and
 - 2. $\lim_{n\to\infty} b_n$ (terms approach zero).
- Error Formula $|S_n S_{\infty}| \leq b_{n+1}$ where S_n is the n^{th} partial sum and S_{∞} is the infinite sum.
- Example 1 Grandi's series $1 1 + 1 1 + 1 1 + \dots$ Diverges because the partial sums don't converge.
- Example 2 Alternating Harmonic series $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ Converges by the Alternating Series Test.

Infinite Series

Comparison Test

- For two series $\sum a_n$ and $\sum b_n$ with positive terms, if $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and is a positive number, then $\sum a_n$ and $\sum b_n$ are *comparable*. This means they either both converge or both diverge.
- If $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$ or if $b_n > a_n$ for all n, then $\sum b_n$ dominates $\sum a_n$, which means two things:
 - 1. If $\sum b_n$ converges, then so does the smaller sum $\sum a_n$.
 - 2. If $\sum a_n$ diverges, then so does the bigger sum $\sum b_n$.
- If $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$ or if $a_n > b_n$ for all n, then $\sum a_n$ dominates $\sum b_n$.
- Remember: You don't get any information from domination if the smaller sum converges or the bigger sum diverges.

Absolute vs. Conditional Convergence

- A series $\sum a_n$ converges absolutely if $\sum |a_n|$ converges.
- A series $\sum a_n$ converges conditionally if $\sum a_n$ converges, but $\sum |a_n|$ doesn't.

Ratio Test

- For any series $\sum a_n$, let $r = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$. There are three cases:
 - 1. If r < 1, then $\sum a_n$ converges absolutely.
 - 2. If r = 1, the ratio test is inconclusive.
 - 3. If r > 1, then $\sum a_n$ diverges.