Continuous Probability Densities

Uniform

$$
X \sim U(a, b)
$$

Situation: X is a random real number in the interval $x \in[a, b]$.

$$
\begin{aligned}
f_{X}(x) & =\frac{1}{b-a} \text { when } x \in[a, b] \\
F_{X}(x) & =\frac{x-a}{b-a} \text { when } x \in[a, b] \\
E(X) & =\frac{1}{2}(a+b) \\
\operatorname{Var}(X) & =\frac{1}{12}(b-a)
\end{aligned}
$$

Normal

$$
X \sim N(\mu, \sigma)
$$

Situation: X is normal with mean μ and standard deviation σ.

$$
\begin{aligned}
f_{X}(x) & =\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}} \\
F_{X}(x) & =\Phi(x) \\
E(X) & =\mu \\
\operatorname{Var}(X) & =\sigma^{2}
\end{aligned}
$$

Exponential

$$
X \sim \operatorname{Exp}(\lambda)
$$

Situation: X is the amount of time until a Poisson event occurs.

$$
\begin{aligned}
f_{X}(x) & =\lambda e^{-\lambda x} \text { when } x \geq 0 \\
F_{X}(x) & =1-e^{-\lambda x} \text { when } x \geq 0 \\
E(X) & =1 / \lambda \\
\operatorname{Var}(X) & =1 / \lambda^{2}
\end{aligned}
$$

Gamma

$$
X \sim \operatorname{Gamma}(n, \lambda)
$$

Situation: X is the amount of time until n Poisson events occur.

$$
\begin{aligned}
f_{X}(x) & =\frac{\lambda^{n} x^{n-1}}{(n-1)!} e^{-\lambda x} \text { when } x \geq 0 \\
F_{X}(x) & =1-e^{-\lambda x}\left(\sum_{k=0}^{n-1} \frac{(\lambda x)^{k}}{k!}\right), x \geq 0 \\
E(X) & =n / \lambda \\
\operatorname{Var}(X) & =n / \lambda^{2}
\end{aligned}
$$

