Counting Functions

Permutations

$$
{ }_{n} P_{k}=(n)_{k}=\frac{n!}{(n-k)!}
$$

Counts: The number of ways to select k objects from a set of n distinct elements without replacement if order matters.

Strings

$$
n^{k}
$$

Counts: The number of ways to select k objects from a set of n distinct elements with replacement if order matters.

Distinguished Permutations

$$
\binom{n}{n_{1}, n_{2}, \ldots, n_{k}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!}
$$

Counts: The number of different possible orderings of a multiset with k distinct elements that have multiplicities n_{1}, \ldots, n_{k}.

A multiset is like a set except elements can repeat, for example $\{a, a, a, b, b\}$ is a multiset where a has multiplicity 3 and b has multiplicity 2 .

This is also the multinomial coefficient which is the coefficient of $x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{k}^{n_{k}}$ in the algebraic expansion of $\left(x_{1}+\ldots+x_{k}\right)^{n}$.

Combinations

$$
{ }_{n} C_{k}=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Counts: The number of ways to select k objects from a set of n distinct elements without replacement if order doesn't matter.

This is also the binomial coefficient which is the coefficient of $x^{k} y^{n-k}$ in the algebraic expansion of $(x+y)^{n}$.

Multicombinations

$$
\left(\binom{n}{k}\right)=\binom{n+k-1}{k}
$$

Counts: The number of ways to select k objects from a set of n distinct elements with replacement if order doesn't matter.

Fundamental Counting Principle Multiplication Rule.

If you have sets A_{1}, \ldots, A_{k} with n_{1}, \ldots, n_{k} elements respectively, then there are $n_{1} \cdots n_{k}$ ways to choose one element from each set.

Addition Rule.

If you have disjoint sets A_{1}, \ldots, A_{k} with n_{1}, \ldots, n_{k} elements respectively, then there are $n_{1}+\ldots+n_{k}$ ways to choose one element from the union.

