Discrete Probability Distributions

Binomial

$$
X \sim \operatorname{Binom}(n, p)
$$

Situation: X is the number of successes in n independent Bernoulli trials, which each have probability of success p.

$$
\begin{aligned}
P(X=k) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
E(X) & =n p \\
\operatorname{Var}(X) & =n p(1-p)
\end{aligned}
$$

Negative Binomial

$$
X \sim \operatorname{Nbinom}(r, p)
$$

Situation: How many trials until you get r successes?

$$
\begin{aligned}
P(X=n) & =\binom{n-1}{r-1} p^{r}(1-p)^{n-r} \\
E(X) & =r / p \\
\operatorname{Var}(X) & =r(1-p) / p^{2}
\end{aligned}
$$

Geometric

$$
X \sim \operatorname{Geom}(p)
$$

Situation: How many trials until you get one success?

$$
\begin{aligned}
P(X=n) & =(1-p)^{n-1} p \\
E(X) & =1 / p \\
\operatorname{Var}(X) & =(1-p) / p^{2}
\end{aligned}
$$

Poisson

$$
X \sim \operatorname{Pois}(\lambda)
$$

Situation: Events are occuring at a fixed rate $\lambda . X$ is the total number of events that occur. Similar to binomial, except you don't know n, but it is very large and you know that $n p=\lambda$.

$$
\begin{aligned}
P(X=k) & =e^{-\lambda} \lambda^{k} / k! \\
E(X) & =\lambda \\
\operatorname{Var}(X) & =\lambda
\end{aligned}
$$

Hypergeometric

$$
X \sim \operatorname{Hyper}(N, M, n)
$$

Situation: A population of size N contains M successes. X is the number of successes in n trials without replacement.

$$
\begin{aligned}
P(X=k) & =\frac{\binom{M}{k}\binom{N-M}{n-k}}{\binom{N}{n}} \\
E(X) & =n p \\
\operatorname{Var}(X) & =n p(1-p)\left(1-\frac{n-1}{N-1}\right)
\end{aligned}
$$

where $p=M / N$.

