Infinite Sums Math 421 - Workshop

Functions can be expressed as infinite Taylor series (also known as power series). The two
most useful Taylor series in probability theory are:
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Other Taylor series can be constructed from these by multiplying, differentiating, and inte-
grating. Remember these linearity rules apply to all series:
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1. Differentiate the power series for

2. Integrate the power series for 1 to get a power series for In(1 — x).
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4. Use the power series for to show that the sum of any geometric series with first
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Differentiate the power series for e*. Write out the first 5 terms of the derivative. What
do you notice?

Suppose that X ~ Pois(A). Write E(X) as an infinite series in both summation and
term-by-term notation.

Use the power series for e” to find E(X) when X is a random variable with the Pois(\)
distribution.

. In class we saw that if X ~ Geom(p), then the expected value of X is:
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Use your answer to Ex. 1 with x = (1 — p) to find the expected value of X.

To find the variance of X ~ Pois(\), you need to find F(X?). Write this as an infinite
sum using both summation and term-by-term notation.

Challenge: Try to evaluate the sum in the last problem. Your answer should be a
function of .



