$Due\ by\ 5:00pm\ Friday,\ September\ 25.\ Send\ a\ PDF\ with\ your\ solutions\ to\ {\tt blins@hsc.edu}.$

- 1. Compute $\int_0^2 xe^{-x} dx$.
- 2. Find $\int_0^{\pi} x \cos(4x) dx.$

3. Use tabular integration to find the antiderivative of x^3e^x .

4. Find $\int (\ln x)^2 dx$. Hint, start by letting $u = (\ln x)^2$ and dv = dx, and use integration by parts twice.

5. Find $\int \sin^3 x \cos^2 x \, dx$.

6. Compute
$$\int_0^{\pi/3} \tan^3 x \sec^2 x \, dx.$$

7. Evaluate
$$\int \frac{\cos \theta}{\sqrt{\sin \theta}} d\theta.$$

8. Make a rough sketch of the slope field for the differential equation $\frac{dy}{dx} = \frac{x+y}{x-y}$. (Either hand drawn or copied and pasted from a computer is fine).

9. Use Euler's method to estimate the value of y(5) for the differential equation $\frac{dy}{dx} = \frac{x+y}{x-y}$ with initial condition y(0) = -1. Use $\Delta x = 0.01$.

10. On midterm 1 we looked at the differential equation $\frac{dy}{dx} = 1 - x - y$ with initial condition y(-1) = 0, but we never solved it. Use Euler's method to estimate where the solution curve crosses the y-axis using $\Delta x = 0.01$ and $\Delta x = 0.001$. Does using a smaller Δx make a difference?