Due by 5:00pm Friday, October 2. Send a PDF with your solutions to blins@hsc.edu.

1. Use the reference triangle below to help compute $\int \frac{x}{\sqrt{36-x^2}} dx$.

2. Use a trigonometric substitution to find $\int x^3 \sqrt{x^2 - 1} dx$.

3. Use partial fractions to evaluate $\int \frac{x+5}{x^2-5x+4} dx$.

4. Compute $\int \frac{1}{x^2-9} dx$.

5. Evaluate $\int \frac{x^3}{x-4} dx$. Hint: Use polynomial long division to simplify first.

6. Compute
$$\lim_{x\to 2} \frac{x^2 + 3x - 10}{x - 2}$$
.

7. Compute
$$\lim_{x\to\pi} \frac{x-\pi}{\sin x}$$
.

8. Find
$$\lim_{x \to 0^+} \left(\frac{12}{x} - \frac{5}{x^2} \right)$$
.

9. Find
$$\lim_{x\to\infty} x^{1/x}$$
. Hint: Let $A = \lim_{x\to\infty} x^{1/x}$ and take the natural log of both sides.

^{10.} Which function grows faster as $x \to \infty$, $f(x) = \ln(x^2)$ or $g(x) = \sqrt{x}$? Use L'Hospital's rule to find out.