Geometric Series are sums where each term is exactly r times the term before it, where r is always the same number (called the common ratio). If $|r|<1$, then the series will converge and the sum of the series is:

$$
a+a r+a r^{2}+a r^{3}+\ldots=\frac{a}{1-r}
$$

(Geometric Sum)
p-Series are series of the form:

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots
$$

Unlike geometric series, these don't have a nice formula for the sum, but it is important to know when they converge. A p-series converges if $p>1$, and it diverges otherwise. When $p=1$, you get the harmonic series which is a simple example of a series that diverges even though the terms approach zero.

Alternating Series have alternating positive and negative terms. Any alternating series can be written as:

$$
\sum_{n=0}^{\infty}(-1)^{n} b_{n}=b_{0}-b_{1}+b_{2}-b_{3}+b_{4}-\ldots
$$

As long as the terms b_{n} are (1) getting smaller, and (2) approaching zero, then the series will converge. One nice thing about alternating series is that you can estimate how far off a partial sum S_{n} is from the infinite sum S using the next term in the series:

$$
\text { Error }=\left|S-S_{n}\right| \leq b_{n+1} .
$$

(Alt. Series Error)
Power Series have a variable x being raised to a power in each term:

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n} .
$$

The constant c is the center of the power series. Every power series has an interval of convergence around $x=c$ that has a radius of

$$
R=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|} .
$$

(Radius of Conv.)
Inside the radius of convergence, the power series will converge to some function $f(x)$, and that function determines the coefficients a_{n} according to the Taylor series formula:

$$
\begin{equation*}
a_{n}=\frac{f^{(n)}(c)}{n!} \tag{TaylorCoeff.}
\end{equation*}
$$

Important examples include:

- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
- $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}-\ldots$
- $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots$
- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots$

There are several ways to make new power series from old ones, including:

- Multiplying
- Dividing
- Differentiating
- Integrating
- Substituting for x.

