Power Series

A power series is a series of the form

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

where the coefficients a_{n} don't depend on x. The number c is called the center of the series. Every power series has a radius of convergence

$$
R=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{\left|a_{n+1}\right|} .
$$

The center and radius of convergence determine an interval of convergence from $c-R$ to $c+R$:

When a power series converges, the value of the sum is a function $f(x)$. The coefficients a_{n} determine the derivatives of f, and vice versa! In fact:

$$
\sum_{n=0}^{\infty} a_{n}(x-c)^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

or put another way, the coefficients are $a_{n}=\frac{f^{(n)}(c)}{n!}$ where $f^{(n)}(c)$ is the $n^{\text {th }}$ derivative of f evaluated at $x=c$. When a series is derived using the formula on the right it is called a Taylor series but that is really just another name for a power series. If the center is $c=0$, then we sometimes call the series a Maclaurin series. Here are the most important Maclaurin series.

- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
- $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$
- $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots$

Exercise. Find the radius and interval of convergence for each of these power series.

