\qquad
Due Monday, August 28. You can e-mail your code for the computer programming problems to me at blins@hsc.edu.

1. Write a logical expression using the operators $\wedge(\mathrm{AND}), \vee(\mathrm{OR})$, and $\neg(\mathrm{NOT})$ and the Boolean variables x_{0}, x_{1}, x_{2} so that the expression is TRUE when an even number of the variables are TRUE and FALSE otherwise.
2. Translate the following mathematical short-hand into English:

$$
\forall a, b \in \mathbb{Z} \text { with } b \neq 0, \exists N \in \mathbb{N}: N>a / b \wedge N>b / a
$$

3. Describe the following sets in words. Just give a brief description of what objects are in the sets, you do not need to list all of the elements.
(a) $[9] \times[9] \times[9]$.
(b) $\left\{x \in\{0,1\}^{2 n}: x_{i}=x_{i+n} \forall i \in[n]\right\}$.
4. Write a computer program to verify that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for every integer $0 \leq n<100$.
5. Use mathematical induction to prove that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for every integer $n \geq 0$.
