Due Wednesday, September 6.

1. Find the cardinalities of the following sets. If the set is infinite, say whether the cardinality is equal to $|\mathbb{N}|=\aleph_{0}$ or not.
(a) $[10] \times[10] \times\{a, b, c\}$
(b) $\left\{f: f:\{0,1\}^{3} \rightarrow\{\right.$ "yes", "no", "maybe" $\left.\}\right\}$
(c) $[3]^{*}$.
2. The function IF-THEN-ELSE: $\{0,1\}^{3} \rightarrow\{0,1\}$ is defined:

$$
\operatorname{IF-THEN-ELSE}(x, y, z)= \begin{cases}y & \text { if } x=1 \\ z & \text { otherwise }\end{cases}
$$

Prove that if you combine this function with the constant functions 0 and 1 , then you get a universal set, i.e., you can construct any function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ using just these three basic functions. Hint: prove that you can use $\{$ IF-THEN-ELSE, 0,1$\}$ to construct all of the functions in another universal set such as $\{A N D, O R, N O T\}$ or $\{N A N D\}$.
3. Any function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ can be encoded by a Boolean function $g:\{0,1\}^{*} \rightarrow\{0,1\}$. One way to do this is to let g input two binary strings $s, t \in\{0,1\}^{*}$ and return 1 if $t=f(s)$ and 0 otherwise. Suppose someone else wrote a computer program that could compute the value of $g(s, t)$ for all possible binary input strings. Explain in words how you could use their code to write a new program that would evaluate the function $f(s)$ for any binary input string s.

Let A, B be sets and let $|A|$ and $|B|$ denote their cardinalities. We say that $|B| \geq|A|$ if there is an onto function $f: A \rightarrow B$. We say that $|B|>|A|$ if $|B| \geq|A|$ and there is no bijection from B to A.
4. Let 2^{A} denote the power set of A, i.e., the set of all subsets of A. Show that $\left|2^{A}\right| \geq|A|$ by describing an onto function $g: 2^{A} \rightarrow A$.
5. Suppose that there is a bijection $f: A \rightarrow 2^{A}$. Let $B=\{a \in A: a \notin f(a)\}$ and let b be the unique element of A such that $f(b)=B$. Then either $b \in B$ or $b \notin B$. Explain why both possibilities lead to a contradiction.
6. What does this mean about the cardinality $\left|2^{A}\right|$?
7. The majority function MAJ : $\{0,1\}^{3} \rightarrow\{0,1\}$ returns 1 if at least two of the inputs are 1 , and returns 0 otherwise. Write a formula or psuedocode program that just uses the NAND function to compute $\operatorname{MAJ}(x, y, z)$. Your program can use as many variables as you need.

