\qquad
Due Monday, September 11.

1. Consider the DFA shown below.
(a) What are the sets Q, Σ, and F in the formal description $(Q, \Sigma, \delta, q, F)$ of this machine?
(b) What sequence of states does the machine go through on the input aabbaa? Does the machine accept aabbaa?

2. Design a DFA that outputs 1 if and only if the input length is divisible by 3 . Draw a state diagram for you answer.
3. Design a DFA that outputs 1 if and only if the input begins with 01 and ends with 01 . Draw a state diagram for your answer.
4. Construct an NFA with three states that accepts a string in $\{0,1\}^{*}$ iff it ends in 00 .
5. Find a DFA that is equivalent to the NFA shown below.

6. Consider a DFA with states $Q=\{0,1,2\}$, alphabet $\Sigma=\{0,1\}$, initial state $q_{0}=0$, and accepting states $F=\{0,1\}$. The transition function is shown in the table below. Write a computer program that takes a string in Σ^{*} as input and prints each state the DFA enters as it goes through the input string. Your program should also return 1 if the DFA accepts the string, otherwise return 0 .

	σ	0
0	1	
1	1	1
2	0	2
	0	0

