\qquad
Due Monday, September 18.

1. Convert the following NFA to a DFA. Use the method we discussed in class, where the states of the DFA correspond to subsets of the states of the original NFA. Hint: After removing states in the DFA that you can never reach, you should only need a small number of states, one of which corresponds to the empty set.

2. Let $\Sigma=\{0,1\}$. Write a one-sentence description the languages defined by the following regular expressions. For example: $\Sigma^{*} 1$ would be any binary string that ends with a 1 .
(a) $(\Sigma \Sigma)^{*}$.
(b) $\Sigma^{*} 01 \Sigma^{*}$.
(c) $\left(0 \Sigma^{*} 0\right) \mid\left(1 \Sigma^{*} 1\right)$.
3. Find a regular expression that matches each of the following languages. In all cases, the alphabet is $\Sigma=\{0,1\}$.
(a) $\left\{w \in \Sigma^{*}: w\right.$ contains at least three 1 's. $\}$
(b) $\left\{w \in \Sigma^{*}: w\right.$ contains at least two 1's and exactly one 0.$\}$
4. Let Σ be the regular English alphabet $\{a, b, c, \ldots, z\}$. Write a regular expression that matches all strings that contain at least two vowels (i.e., a, e, i, o, u).
5. Prove that if $L \subset \Sigma^{*}$ is a regular language, then complement $\Sigma^{*} \backslash L$ is also a regular language. Hint: If there is a DFA $M=(Q, \Sigma, \delta, q, F)$ that recognizes L, describe a different DFA that recognizes the complement.
6. Let $L=\left\{w \in \Sigma^{*}\right.$: the length of w is a power of 2$\}$. Use the pumping lemma to prove that L is not a regular language.
