\qquad
Due Monday, October 2.

1. Construct a context free grammar that generates each of the following languages.
(a) $\left\{a^{2 n} b^{n}: n \in \mathbb{N}\right\}$
(b) $\left\{w \in\{0,1\}^{*}: w\right.$ starts and ends with the same symbol. $\}$
(c) $\left\{w \in\{a, b, c\}^{*}:\right.$ length of w is odd and its middle symbol is $\left.b\right\}$
(d) $\left\{w \in\{0,1\}^{*}: w\right.$ is a palindrome. $\}$ Hint: Make sure your grammar generates both even and odd length palindromes.
2. Identify the parts of the tuple (V, Σ, R, S) in your answer to problem 1 part (b).
3. Let $\Sigma=\{(),,[]$,$\} . That is, \Sigma$ is the alphabet consisting of the four symbols (,), [, and]. Let L be the language over Σ consisting of strings in which both parentheses and brackets are balanced. For example, the string ([][()()])([]) is in L but [(]) is not. Find a context-free grammar that generates the language L.
4. Show that the following grammar is ambiguous by finding a string that has two different left derivations.

$$
\begin{aligned}
& S \rightarrow S S \\
& S \rightarrow a S b \\
& S \rightarrow b S a \\
& S \rightarrow \epsilon
\end{aligned}
$$

5. Draw two different parse trees for the string ababbaab based on the grammar in the previous problem.
6. Suppose that the string $a b b c a b a c$ has the following parse tree, according to some grammar G. Identify 5 production rules that must be rules in the grammar G.

