Homework 7 - Computer Science 461

Due Wednesday, October 18.

- 1. Give a detailed written description (but not a state diagram) of a Turing machine that accepts the following languages.
 - (a) $L = \{w \in \{a, b\}^* : w \text{ has an equal number of } a$'s and b's $\}$.

(b) $L = \{a^n b^{2n} c^{3n} : n \ge 1\}.$

2. Let $\Sigma = \{a\}$. Draw a state diagram for a Turing machine that evaluates the function $f : \Sigma^* \to \Sigma^*$ defined by $f(a^n) = a^{2n}$.

3. A binary-incrementer is a function that reads a binary number from a tape, and replaces it with the binary number that is one greater. So 111 becomes 1000, for example. Draw a state diagram for a Turing machine that evaluates the binary-incrementer function.

4. If you have a Turing machine that computes the **binary-incrementer** function, explain how you could create a Turing machine that reads a string of n 1's, and replaces it with the binary integer that represents n. For example 1111 would become 100 since 100 represents n = 4 in binary.

5. Let Σ be an alphabet, and let $L \subset \Sigma^*$ be a language. If L is decidable, prove that its complement \overline{L} is also decidable.

6. Why doesn't the same argument show that the complement of an acceptable language is acceptable?