\qquad
Due Wednesday, October 18.

1. Give a detailed written description (but not a state diagram) of a Turing machine that accepts the following languages.
(a) $L=\left\{w \in\{a, b\}^{*}: w\right.$ has an equal number of a 's and b 's $\}$.
(b) $L=\left\{a^{n} b^{2 n} c^{3 n}: n \geq 1\right\}$.
2. Let $\Sigma=\{a\}$. Draw a state diagram for a Turing machine that evaluates the function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ defined by $f\left(a^{n}\right)=a^{2 n}$.
3. A binary-incrementer is a function that reads a binary number from a tape, and replaces it with the binary number that is one greater. So 111 becomes 1000 , for example. Draw a state diagram for a Turing machine that evaluates the binary-incrementer function.
4. If you have a Turing machine that computes the binary-incrementer function, explain how you could create a Turing machine that reads a string of $n 1$'s, and replaces it with the binary integer that represents n. For example 1111 would become 100 since 100 represents $n=4$ in binary.
5. Let Σ be an alphabet, and let $L \subset \Sigma^{*}$ be a language. If L is decidable, prove that its complement \bar{L} is also decidable.
6. Why doesn't the same argument show that the complement of an acceptable language is acceptable?
