\qquad
Due Monday, October 23.

1. Prove that if $A, B \subset \Sigma^{*}$ are both Turing decidable languages, then the intersection $A \cap B$ is also a decidable language.
2. Let $D \subset \Sigma^{*}$ be a decidable language. Prove that

$$
C=\left\{x \in \Sigma^{*}: \text { there exists } y \in \Sigma^{*} \text { such that } x y \in D\right\}
$$

is recognizable.
3. A subset $S \subset \mathbb{N}$ is decidable if there is a computable function $f: \mathbb{N} \rightarrow\{0,1\}$ such that $f(n)=1$ if and only if $n \in S$. Give an informal argument to explain the following fact: A subset $S \subset \mathbb{N}$ is decidable if and only if there is a computer program that prints the elements of S in increasing order. Hint: Since the fact is an if and only if statement, you'll have to explain both directions.
4. Let L be a Turing recognizable language that consists of binary descriptions of Turing machines

$$
L=\left\{\left\langle D_{0}\right\rangle,\left\langle D_{1}\right\rangle,\left\langle D_{2}\right\rangle, \ldots\right\}
$$

where every D_{i} is a decider (assume that every D_{i} has input alphabet $\Sigma=\{0,1\}$). Prove that there is a decidable language in $\{0,1\}^{*}$ that is not decided by any of the deciders $D_{i}, i \in \mathbb{N}$. Hint: Use a diagonalization argument on the strings in $\{0,1\}^{*}$ to construct a TM N which decides a language $L(N)$ that is different from any of the languages $L\left(D_{i}\right)$.

