1. (8 points) Consider the DFA shown below.

(a) What sequence of states will this DFA enter as it reads the string 110101?

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad q_{0} \rightarrow q_{0} \rightarrow q_{0} \rightarrow q_{1} \rightarrow q_{2} \rightarrow q_{0} \rightarrow q_{0}
\end{aligned}
$$

(b) Will this DFA accept the string 110101?

Solution: No, it will not accept that string because it ends in state q_{0}.
2. (16 points) The following statements are all false. For each one, explain why it is false.
(a) The cardinality of $\{0,1\}^{*}$ is uncountable.

Solution: This is false because $\{0,1\}^{*}$ is countably infinite. It is a countable union of finite sets.
(b) The NAND function is universal which means that any function $f:\{0,1\}^{*} \rightarrow\{0,1\}$ can be expressed using NAND functions.

Solution: This is false because NAND can only compute all Boolean valued functions defined on binary strings of a fixed finite length, not arbitrary length. Universal means that all function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ can be expressed using NAND functions for any fixed n.
(c) The union of any two languages $A, B \subset\{0,1\}^{*}$ is a regular language.

Solution: This is false unless you also assume that A and B are both regular languages.
(d) Boolean logic circuits, DFAs, NFAs, and regular expressions are all equivalent computationally. They are all able to recognize regular languages.

Solution: Every regular language can be checked with an NFA or DFA or expressed with a regular expression, but not every regular language can be checked by a Boolean logic circuit.
3. (12 points) Let $L \subset\{0,1\}^{*}$ be the language that contains all strings with at least one 1 and at most one 0 . Construct a DFA that accepts L.

Solution:

4. (16 points) Consider the regular expression $(00)^{*} 1(0 \mid 1)$.
(a) Describe in words the set of strings that this regular expression will match.

Solution: Any string that combines an even number of zeros with either a 10 or 11 at the end.
(b) Construct an NFA (or DFA) that accepts exactly that set of strings.

Solution:

5. (8 points) In biology, strings of three DNA nucleotides (called codons) are known to encode 20 different amino acids. Here, the alphabet consists of the four DNA nucleotides $\Sigma=\{A, C, G, T\}$. Let \mathcal{A} denote the set of 20 possible amino acids.
(a) How many possible strings of three nucleotides are there? In other words, find $\left|\Sigma^{3}\right|$.

Solution: There are $4^{3}=64$ possible strings of length three from $\{A, C, G, T\}$.
(b) How many possible functions are there from $\Sigma^{3} \rightarrow \mathcal{A}$?

Solution: There are 20^{64} possible functions from Σ^{3} to \mathcal{A}.
6. (8 points) Consider the DFA shown below.

(a) This DFA can be described by a quintuple $(Q, \Sigma, \delta, q, F)$ where $\Sigma=\{0,1\}$. What are Q, q and F in this notation?

Solution: $Q=\left\{q_{0}, q_{1}, q_{2}\right\}, q=q_{0}$, and $F=\left\{q_{2}\right\}$.
(b) Find a regular expression that matches the same set of strings that this DFA accepts.

Solution:

$$
(0 \mid 1)^{*} 00(0 \mid 1)^{*}
$$

7. (12 points) Let $L \subset\{0,1\}^{*}$ be the language consisting of all strings with more 0 's than 1 's. Use the pumping lemma to prove that L is not regular.

Solution: If L is regular, then it has a pumping number p. Consider the string $1^{p} 0^{p+1}$. If you pump this string, then you will increase the number of 1's, which will give you a string not in L. That is a contradiction, so L is not regular.
8. (20 points) Let $\Sigma=\{0,1,+,=\}$ and let

$$
L=\{x=y+z: x, y, z \text { are binary integers, and } x \text { is the sum of } y \text { and } z\} .
$$

(a) Which of the following strings are in L ? Circle all correct answers, there might be more than one.
A. $100=1+10$
B. $11=10+1$
C. $2=1+1$
D. $1000=111+1$
E. $x=11+z$, if $y=11$
(b) Is it possible to write a regular expression over Σ that represents all valid strings in L ? Explain why or why not.

Solution: No, there is no regular expression for this language because it is not regular. If it were regular, there would be a pumping length p, such that any string longer than p in L could be pumped. But a string that begins with p 1's could not be pumped since adding more ones to the binary number on the left side of the equality will make the equation not true.

