## COMS 461 - Midterm 1

```
Name:
```

1. (8 points) Consider the DFA shown below.



(a) What sequence of states will this DFA enter as it reads the string 110101?

Solution:

```
q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow q_0 \rightarrow q_0
```

(b) Will this DFA accept the string 110101?

**Solution:** No, it will not accept that string because it ends in state  $q_0$ .

- 2. (16 points) The following statements are all false. For each one, explain why it is false.
  - (a) The cardinality of  $\{0, 1\}^*$  is uncountable.

**Solution:** This is false because  $\{0,1\}^*$  is countably infinite. It is a countable union of finite sets.

(b) The NAND function is universal which means that any function  $f : \{0,1\}^* \to \{0,1\}$  can be expressed using NAND functions.

**Solution:** This is false because NAND can only compute all Boolean valued functions defined on binary strings of a fixed finite length, not arbitrary length. Universal means that all function  $f: \{0, 1\}^n \to \{0, 1\}$  can be expressed using NAND functions for any fixed n.

(c) The union of any two languages  $A, B \subset \{0, 1\}^*$  is a regular language.

Solution: This is false unless you also assume that A and B are both regular languages.

(d) Boolean logic circuits, DFAs, NFAs, and regular expressions are all equivalent computationally. They are all able to recognize regular languages.

**Solution:** Every regular language can be checked with an NFA or DFA or expressed with a regular expression, but not every regular language can be checked by a Boolean logic circuit.

3. (12 points) Let  $L \subset \{0, 1\}^*$  be the language that contains all strings with at least one 1 and at most one 0. Construct a DFA that accepts L.



4. (16 points) Consider the regular expression  $(00)^*1(0|1)$ .

(a) Describe in words the set of strings that this regular expression will match.

**Solution:** Any string that combines an even number of zeros with either a 10 or 11 at the end.

(b) Construct an NFA (or DFA) that accepts exactly that set of strings.



- 5. (8 points) In biology, strings of three DNA nucleotides (called *codons*) are known to encode 20 different amino acids. Here, the alphabet consists of the four DNA nucleotides  $\Sigma = \{A, C, G, T\}$ . Let  $\mathcal{A}$  denote the set of 20 possible amino acids.
  - (a) How many possible strings of three nucleotides are there? In other words, find  $|\Sigma^3|$ .

**Solution:** There are  $4^3 = 64$  possible strings of length three from  $\{A, C, G, T\}$ .

(b) How many possible functions are there from  $\Sigma^3 \to \mathcal{A}$ ?

**Solution:** There are  $20^{64}$  possible functions from  $\Sigma^3$  to  $\mathcal{A}$ .

6. (8 points) Consider the DFA shown below.



(a) This DFA can be described by a quintuple  $(Q, \Sigma, \delta, q, F)$  where  $\Sigma = \{0, 1\}$ . What are Q, q and F in this notation?

Solution:  $Q = \{q_0, q_1, q_2\}, q = q_0, \text{ and } F = \{q_2\}.$ 

(b) Find a regular expression that matches the same set of strings that this DFA accepts.

Solution: (0|1)\*00(0|1)\* 7. (12 points) Let  $L \subset \{0,1\}^*$  be the language consisting of all strings with more 0's than 1's. Use the pumping lemma to prove that L is not regular.

**Solution:** If L is regular, then it has a pumping number p. Consider the string  $1^{p}0^{p+1}$ . If you pump this string, then you will increase the number of 1's, which will give you a string not in L. That is a contradiction, so L is not regular.

8. (20 points) Let  $\Sigma = \{0, 1, +, =\}$  and let

 $L = \{x = y + z : x, y, z \text{ are binary integers, and } x \text{ is the sum of } y \text{ and } z\}.$ 

- (a) Which of the following strings are in L? Circle all correct answers, there might be more than one.
  - A. 100=1+10
    B. 11=10+1
    C. 2=1+1
    D. 1000=111+1
    E. x=11+z, if y=11
- (b) Is it possible to write a regular expression over  $\Sigma$  that represents all valid strings in L? Explain why or why not.

**Solution:** No, there is no regular expression for this language because it is not regular. If it were regular, there would be a pumping length p, such that any string longer than p in L could be pumped. But a string that begins with p 1's could not be pumped since adding more ones to the binary number on the left side of the equality will make the equation not true.