
Homework 12 - Math 142 Name:

1. Use the integral test to determine whether
∞∑
n=2

1

n lnn
converges or diverges.

2. Show that each of the following series converges by finding a larger, simpler series that converges.

(a)
∞∑
n=2

n

n3 + 1
.

(b)
∞∑
n=0

2n − n2

3n
.

3. Determine whether the infinite series
∞∑
n=0

1

ln(n+ 2)
converges or diverges by finding a good compar-

ison. Explain how your comparison works.

4. Explain clearly how you can tell that the following infinite series must diverge:
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5. How many terms of the alternating series 1− 1
4
+ 1

9
− 1

16
+ 1

25
− . . . would you need in order to estimate

the sum with an error of less than 0.01? Use a calculator or Desmos to find the sum of the series to
that level of accuracy.

6. Use Desmos to approximate the sum
∞∑
n=0

(−1)nπ2n

36n (2n)!
by computing the partial sum up to the n = 4

term. Include an estimate for how much error there is in this approximation.

7. Identify each series below as alternating, geometric, or p-series. Note: more than one description
might apply so circle or list all that are appropriate. Then determine whether the series converges
or diverges.
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∞∑
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