\qquad

1. Use the integral test to determine whether $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converges or diverges.
2. Show that each of the following series converges by finding a larger, simpler series that converges.
(a) $\sum_{n=2}^{\infty} \frac{n}{n^{3}+1}$.
(b) $\sum_{n=0}^{\infty} \frac{2^{n}-n^{2}}{3^{n}}$.
3. Determine whether the infinite series $\sum_{n=0}^{\infty} \frac{1}{\ln (n+2)}$ converges or diverges by finding a good comparison. Explain how your comparison works.
4. Explain clearly how you can tell that the following infinite series must diverge:

$$
\frac{3}{5}+\frac{7}{6}+\frac{11}{7}+\frac{15}{8}+\frac{19}{9}+\ldots
$$

5. How many terms of the alternating series $1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\ldots$ would you need in order to estimate the sum with an error of less than 0.01 ? Use a calculator or Desmos to find the sum of the series to that level of accuracy.
6. Use Desmos to approximate the sum $\sum_{n=0}^{\infty} \frac{(-1)^{n} \pi^{2 n}}{36^{n}(2 n)!}$ by computing the partial sum up to the $n=4$ term. Include an estimate for how much error there is in this approximation.
7. Identify each series below as alternating, geometric, or p-series. Note: more than one description might apply so circle or list all that are appropriate. Then determine whether the series converges or diverges.

	Alternating	
$\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n}}$	Geometric	Converges
p-Series	Diverges	

	Alternating	
$\sum_{n=2}^{\infty}(-1)^{n}\left(\frac{n^{3}}{n+1}\right)$	Geometric	Converges
p-Series	Diverges	

	Alternating	
$1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+\frac{1}{\sqrt{5}}+\ldots$	Geometric	Converges
p-Series	Diverges	

