\qquad

1. Compute $\lim _{x \rightarrow 2} \frac{x^{2}+3 x-10}{x-2}$.
2. Compute $\lim _{x \rightarrow \pi} \frac{x-\pi}{\sin x}$.
3. Find $\lim _{x \rightarrow 0^{+}}\left(\frac{12}{x}-\frac{5}{x^{2}}\right)$.
4. Find $\lim _{x \rightarrow \infty} x^{1 / x}$. Hint: Let $A=\lim _{x \rightarrow \infty} x^{1 / x}$ and take the natural \log of both sides.
5. Which function grows faster as $x \rightarrow \infty, f(x)=\ln \left(x^{2}\right)$ or $g(x)=\sqrt{x}$? Use L'Hospital's rule to find out.
6. Find $\int_{0}^{\infty} x^{2} e^{-2 x} d x$.
7. Show that each of the following integrals diverge by finding a smaller (simpler) integral that diverges.
(a) $\int_{0}^{1} \frac{e^{x}}{x^{2}} d x$
(b) $\int_{e}^{\infty} \sqrt{\ln x} d x$
8. For each of the following, find a larger integral that converges.
(a) $\int_{0}^{\infty} e^{-x} \sin ^{2} x d x$
(b) $\int_{1}^{\infty} \frac{\sqrt{x}}{1+x^{2}} d x$
9. Determine whether the integral $\int_{2}^{\infty} \sqrt{\frac{\sqrt{x}+3}{x-1}} d x$ converges or diverges by finding a simpler integral to compare it with. Clearly explain how your comparison works.
