1. Find the volume of the region under $y=\sqrt{\sin x}$ from $x=0$ to $x=\pi$ when it is revolved around the x -axis.
2. Find the volume of the region under the curve $y=\frac{1}{x}$ from $x=1$ to $x=2$ when it is revolved around the x -axis.
3. Let \mathcal{R} be the region between the curve $y=2-x^{2}$ and the line $y=1$. When you revolve this region around the x -axis, you get a ring shape. Use the washer method to find the volume of this ring.
4. What is the volume of the solid obtained by revolving the region beneath $y=e^{-x}$ from $x=0$ to ∞ around the x-axis?
