Know how these four special types of infinite series work.
Geometric Series converge if and only if the common ratio r has $|r|<1$. Then the sum is:

$$
\sum_{n=0}^{\infty} a r^{n}=a+a r+a r^{2}+a r^{3}+\ldots=\frac{a}{1-r} . \quad \text { (Geometric Sum Formula) }
$$

p-Series converge if and only if $p>1$.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\ldots
$$

When $p=1$, you get the harmonic series which is a simple example of a series that diverges even though the terms approach zero.

Alternating Series If the terms b_{n} are (1) decreasing and (2) approach zero, then it will converge.

$$
\sum_{n=0}^{\infty}(-1)^{n} b_{n}=b_{0}-b_{1}+b_{2}-b_{3}+b_{4}-\ldots
$$

For alternating series, you can estimate how far a partial sum S_{n} is away from the infinite sum S_{∞} using the next term in the series:

$$
\mid \text { Error }\left|=\left|S_{\infty}-S_{n}\right| \leq b_{n+1} . \quad\right. \text { (Alternating Series Error Formula) }
$$

Power Series are functions of a variable x and converge for all x inside an interval of convergence.

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-c)^{n}
$$

Use the ratio test to find the interval of convergence. The coefficients a_{n} are:

$$
a_{n}=\frac{f^{(n)}(c)}{n!} .
$$

(Taylor Coefficient Formula)
Important power series examples include:

- $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$
- $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}-\ldots$
- $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}-\ldots$
- $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\ldots$

There are several ways to make new power series from old ones, including:

- Multiplying
- Dividing
- Differentiating
- Integrating
- Substituting for x.

