Calculus II - Math 142

1. Evaluate the following integrals.

(a)
$$\int e^x \cos(e^x) dx.$$

(b)
$$\int \tan^5 \theta \sec^3 \theta \, d\theta$$
.

(c)
$$\int x^2 \cos(3x) dx$$

2. Find the third degree Taylor polynomial for $f(x) = x^3 + 2x - 3$ centered at c = 2.

Final Exam Review Problems

3. Solve the differential equation $\frac{dy}{dx} = \frac{\cos x}{y^2}$ with initial condition $y(\pi) = 2$.

4. For each of the following series, determine whether it converges or diverges and give your reasoning.

(a)
$$\sum_{n=0}^{\infty} \frac{(-1)^n 5^{n+1}}{6^n}$$

(b)
$$\sum_{k=2}^{\infty} \frac{\ln k}{k-1}$$

(c)
$$\sum_{n=1}^{\infty} \cos(n\pi)$$

5. Find all values of x for which the Taylor series $\sum_{n=0}^{\infty} \frac{2^n}{n} x^n$ converges.

6. Suppose I am pushing a heavy object over snow covered ground. The further I go, the deeper the snow gets, making me use more and more force to push the object. If the force I use as I push the object 100 meters is shown in the graph below, find the amount of work I did.

7. Find the following limits.

(a)
$$\lim_{x \to 0} \frac{\cos 2x - 1}{x^2}$$

(b)
$$\lim_{x \to \infty} \frac{e^x + \ln x}{x^2 + 100}$$

8. Let \mathcal{R} be the region under the curve $y = 4x - 2x^2$ from x = 1 to x = 2.

(a) Find the volume of the solid formed by revolving \mathcal{R} around the *y*-axis.

(b) Set up, but do not evaluate, an integral for the volume of the solid formed by revolving \mathcal{R} around the x-axis.

- 9. Suppose that $f(x) = \sin(x^3)$.
 - (a) Find a Maclaurin series for f(x).

(b) Use part (a) to find an infinite series for the integral
$$\int_0^1 \sin(x^3) dx$$
.

10. Evaluate the following integrals.

(a)
$$\int x^4 \ln x \, dx$$

(b)
$$\int \frac{x^3 + 4}{x^2 - 4} \, dx$$

- 11. Solve the following logarithm problems.
 - (a) Simplify $\log_5(50) + \log_5(\frac{5}{2})$.

(b) Solve the equation $2^{x-1} = e^5$.

12. Use logarithmic differentiation to find the derivative of $y = (1 + x)^x$.

13. Use the trig substitution $x = \sin \theta$ to evaluate

$$\int x^3 \sqrt{1 - x^2} \, dx$$

14. Simplify $\tan(\arcsin(x^2))$ using a reference triangle.

15. Find the area between the two curves $f(x) = x^2 - 6x$ and g(x) = 3 - 4x.

16. Estimate the worst case error in using the second degree Maclaurin polynomial $1 - \frac{x^2}{2}$ to approximate $\cos(0.3)$.

17. Find the sums of the following geometric series. (a) $7 + 1 + \frac{1}{7} + \frac{1}{49} + \dots$

(b)
$$x^2 + \frac{x^3}{5} + \frac{x^4}{25} + \frac{x^5}{125} + \dots$$

(c)
$$\sum_{n=0}^{\infty} \frac{(-3)^n}{4^{n-1}}$$

18. The slope field below corresponds to the differential equation $y' = -\frac{1}{4}x(y+2)$. What does the solution of the differential equation with initial condition y(-2) = 0 look like? Draw a rough sketch of the solution on the slope field below. You do not need to solve the differential equation.

