Calculus II - Math 142

Final Exam Review Problems

1. Evaluate the following integrals.
(a) $\int e^{x} \cos \left(e^{x}\right) d x$.
(b) $\int \tan ^{5} \theta \sec ^{3} \theta d \theta$.
(c) $\int x^{2} \cos (3 x) d x$
2. Find the third degree Taylor polynomial for $f(x)=x^{3}+2 x-3$ centered at $c=2$.
3. Solve the differential equation $\frac{d y}{d x}=\frac{\cos x}{y^{2}}$ with initial condition $y(\pi)=2$.
4. For each of the following series, determine whether it converges or diverges and give your reasoning.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n+1}}{6^{n}}$
(b) $\sum_{k=2}^{\infty} \frac{\ln k}{k-1}$
(c) $\sum_{n=1}^{\infty} \cos (n \pi)$
5. Find all values of x for which the Taylor series $\sum_{n=0}^{\infty} \frac{2^{n}}{n} x^{n}$ converges.
6. Suppose I am pushing a heavy object over snow covered ground. The further I go, the deeper the snow gets, making me use more and more force to push the object. If the force I use as I push the object 100 meters is shown in the graph below, find the amount of work I did.

7. Find the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{x^{2}}$
(b) $\lim _{x \rightarrow \infty} \frac{e^{x}+\ln x}{x^{2}+100}$
8. Let \mathcal{R} be the region under the curve $y=4 x-2 x^{2}$ from $x=1$ to $x=2$.

(a) Find the volume of the solid formed by revolving \mathcal{R} around the y-axis.
(b) Set up, but do not evaluate, an integral for the volume of the solid formed by revolving \mathcal{R} around the x-axis.
9. Suppose that $f(x)=\sin \left(x^{3}\right)$.
(a) Find a Maclaurin series for $f(x)$.
(b) Use part (a) to find an infinite series for the integral $\int_{0}^{1} \sin \left(x^{3}\right) d x$.
10. Evaluate the following integrals.
(a) $\int x^{4} \ln x d x$
(b) $\int \frac{x^{3}+4}{x^{2}-4} d x$
11. Solve the following logarithm problems.
(a) Simplify $\log _{5}(50)+\log _{5}\left(\frac{5}{2}\right)$.
(b) Solve the equation $2^{x-1}=e^{5}$.
12. Use logarithmic differentiation to find the derivative of $y=(1+x)^{x}$.
13. Use the trig substitution $x=\sin \theta$ to evaluate

$$
\int x^{3} \sqrt{1-x^{2}} d x
$$

14. Simplify $\tan \left(\arcsin \left(x^{2}\right)\right)$ using a reference triangle.
15. Find the area between the two curves $f(x)=x^{2}-6 x$ and $g(x)=3-4 x$.
16. Estimate the worst case error in using the second degree Maclaurin polynomial $1-\frac{x^{2}}{2}$ to approximate $\cos (0.3)$.
17. Find the sums of the following geometric series.
(a) $7+1+\frac{1}{7}+\frac{1}{49}+\ldots$
(b) $x^{2}+\frac{x^{3}}{5}+\frac{x^{4}}{25}+\frac{x^{5}}{125}+\ldots$
(c) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{4^{n-1}}$
18. The slope field below corresponds to the differential equation $y^{\prime}=-\frac{1}{4} x(y+2)$. What does the solution of the differential equation with initial condition $y(-2)=0$ look like? Draw a rough sketch of the solution on the slope field below. You do not need to solve the differential equation.

