Calculus II - Math 142

Final Exam Review Solutions

1. Evaluate the following integrals.
(a) $\int e^{x} \cos \left(e^{x}\right) d x$.

Solution: (Hint) Use the u-substitution $u=e^{x}$.
(b) $\int \tan ^{5} \theta \sec ^{3} \theta d \theta$.

Solution: (Hint) Keep a factor of $\sec \theta \tan \theta d \theta$ as your integrating factor, and covert the other four tangents to secants using the identity $\sec ^{2} \theta-1=\tan ^{2} \theta$.
(c) $\int x^{2} \cos (3 x) d x$

Solution: (Hint) Use the tabular method.

$$
\frac{1}{3} x^{2} \sin 3 x+\frac{2}{9} \cos 3 x-\frac{2}{27} \sin 3 x+C
$$

2. Find the third degree Taylor polynomial for $f(x)=x^{3}+2 x-3$ centered at $c=2$.

Solution: (Hint) Make a table of derivatives.

$$
P_{3}(x)=9+14(x-2)+\frac{12}{2!}(x-2)^{2}+\frac{6}{3!}(x-2)^{3}
$$

3. Solve the differential equation $\frac{d y}{d x}=\frac{\cos x}{y^{2}}$ with initial condition $y(\pi)=2$.

Solution:

$$
y=\sqrt[3]{3 \sin x+8}
$$

4. For each of the following series, determine whether it converges or diverges and give your reasoning.
(a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n+1}}{6^{n}}$

Solution: (Hint) This is a geometric series, so you can tell whether it converges by finding the common ratio. It is also an alternating series, so you could also use the alternating series test.
(b) $\sum_{k=2}^{\infty} \frac{\ln k}{k-1}$

Solution: Diverges by comparison with the harmonic series $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots$ which is a p-series with $p=1$ (so it diverges).
(c) $\sum_{n=1}^{\infty} \cos (n \pi)$

Solution: The terms of this series alternate between +1 and -1 . Since the terms don't converge to zero, the series cannot converge.
5. Find all values of x for which the Taylor series $\sum_{n=0}^{\infty} \frac{2^{n}}{n} x^{n}$ converges.

Solution:

$$
\left[-\frac{1}{2}, \frac{1}{2}\right)
$$

6. Suppose I am pushing a heavy object over snow covered ground. The further I go, the deeper the snow gets, making me use more and more force to push the object. If the force I use as I push the object 100 meters is shown in the graph below, find the amount of work I did.

Solution: (Hint) Work is $\int F d x$ which is just the area under this curve.

$$
200,000 \text { Newton-meters (Joules) }
$$

7. Find the following limits.
(a) $\lim _{x \rightarrow 0} \frac{\cos 2 x-1}{x^{2}}$

Solution:

$$
-2
$$

(b) $\lim _{x \rightarrow \infty} \frac{e^{x}+\ln x}{x^{2}+100}$

Solution:

8. Let \mathcal{R} be the region under the curve $y=4 x-2 x^{2}$ from $x=1$ to $x=2$.

(a) Find the volume of the solid formed by revolving \mathcal{R} around the y-axis.

Solution:

$$
V=\frac{11 \pi}{3}
$$

(b) Set up, but do not evaluate, an integral for the volume of the solid formed by revolving \mathcal{R} around the x-axis.

Solution:

$$
V=\int_{1}^{2} \pi\left(4 x-2 x^{2}\right)^{2} d x
$$

9. Suppose that $f(x)=\sin \left(x^{3}\right)$.
(a) Find a Maclaurin series for $f(x)$.

Solution:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{6 n+3}}{(2 n+1)!} \quad \text { or } \quad x^{3}-\frac{x^{9}}{3!}+\frac{x^{15}}{5!}-\frac{x^{21}}{7!}+\ldots
$$

(b) Use part (a) to find an infinite series for the integral $\int_{0}^{1} \sin \left(x^{3}\right) d x$.

Solution:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(6 n+4)(2 n+1)!} \quad \text { or } \quad \frac{1}{4}-\frac{1}{10 \cdot 3!}+\frac{1}{16 \cdot 5!}-\frac{1}{22 \cdot 7!}+\ldots
$$

10. Evaluate the following integrals.
(a) $\int x^{4} \ln x d x$

Solution: (Hint) The tabular method won't work since $\ln x$ isn't easy to integrate. Use integration by parts instead, with $u=\ln x$ and $d v=x^{4} d x$.

$$
\frac{1}{5} x^{5} \ln x-\frac{1}{25} x^{5}+C
$$

(b) $\int \frac{x^{3}+4}{x^{2}-4} d x$

Solution: (Hint) Use polynomial long-division first, then partial fractions.

$$
\frac{x^{2}}{2}+3 \ln |x-2|+\ln |x+2|+C
$$

11. Solve the following logarithm problems.
(a) Simplify $\log _{5}(50)+\log _{5}\left(\frac{5}{2}\right)$.

Solution:

(b) Solve the equation $2^{x-1}=e^{5}$.

Solution:

$$
x=\frac{5}{\ln 2}+1
$$

12. Use logarithmic differentiation to find the derivative of $y=(1+x)^{x}$.

Solution:

$$
y^{\prime}=\left(\frac{x}{1+x}+\ln (1+x)\right)(1+x)^{x}
$$

13. Use the trig substitution $x=\sin \theta$ to evaluate

$$
\int x^{3} \sqrt{1-x^{2}} d x
$$

Solution:

$$
\frac{\left(1-x^{2}\right)^{5 / 2}}{5}-\frac{\left(1-x^{2}\right)^{3 / 2}}{3}+C
$$

14. Simplify $\tan \left(\arcsin \left(x^{2}\right)\right)$ using a reference triangle.

Solution: (Hint) The right reference triangle is:

15. Find the area between the two curves $f(x)=x^{2}-6 x$ and $g(x)=3-4 x$.

Solution: (Hint) You have to figure out where the two functions intersect first.

$$
\frac{32}{3}
$$

16. Estimate the worst case error in using the second degree Maclaurin polynomial $1-\frac{x^{2}}{2}$ to approximate $\cos (0.3)$.

Solution: (Hint) Use the alternating series error formula.

$$
\text { Error }<\frac{0.3^{4}}{4!}
$$

17. Find the sums of the following geometric series.
(a) $7+1+\frac{1}{7}+\frac{1}{49}+\ldots$

Solution:

$$
\frac{49}{6}
$$

(b) $x^{2}+\frac{x^{3}}{5}+\frac{x^{4}}{25}+\frac{x^{5}}{125}+\ldots$

Solution:

$$
\frac{x^{2}}{1-\frac{x}{5}}
$$

(c) $\sum_{n=0}^{\infty} \frac{(-3)^{n}}{4^{n-1}}$

Solution:

$$
=\frac{4}{1-\frac{-3}{4}}=\frac{16}{7}
$$

18. The slope field below corresponds to the differential equation $y^{\prime}=-\frac{1}{4} x(y+2)$. What does the solution of the differential equation with initial condition $y(-2)=0$ look like? Draw a rough sketch of the solution on the slope field below. You do not need to solve the differential equation.

Solution: The red curve follows the slope field and passes through the point $(-2,0)$, so it is the graph of the solution of the differential equation.

