These are suggested review problems similar to what might be on Midterm 3. Included with each problem is a link to a video where you can see how the problem is solved. I didn't make the videos, they are all available online.

1. Find the volume of the region between the curve $y=x^{3}$, line $y=8$, and the y-axis when it is revolved around the y-axis.
2. Find the arc length of the curve $f(x)=1+6 x^{3 / 2}$ for $0 \leq x \leq 1$.
3. A circular swimming pool is 24 ft . in diameter, the sides are 5 feet high, and the depth of the water is 4 ft . How much work is required to pump all of the water out over the sides (recall that the weight density of water is 62.4 lbs . per cubic foot).
4. Re-write the series $3 e+e^{2}+\frac{e^{3}}{3}+\frac{e^{4}}{9}+\frac{e^{5}}{27}+\ldots$ in summation notation, then find the sum.
5. Find the sum of the geometric series $\sum_{n=1}^{\infty}\left(2^{3 n} \cdot 5^{1-2 n}\right)$.
6. Evaluate $\int \frac{e^{x^{2}}}{x} d x$ as an infinite series.
7. Use the comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{1}{2^{n}+n}$ converges or diverges.
8. Find the volume of the region under the curve $y=2 x^{2}-x^{3}$ from $x=0$ to $x=2$ when it is revolved around the y-axis.
9. Consider the infinite series $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k!}$. The 5 th partial sum is

$$
S_{5}=\sum_{k=1}^{5} \frac{(-1)^{k}}{k!}=-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}=-\frac{19}{30}
$$

Estimate the worst case error for how far $S_{5}=-\frac{19}{30}$ might be from the true value of the infinite sum.

