Due Friday, November 10. Be sure to show any work you needed to do. You can use a calculator or computer, but give exact (not decimal) answers when possible.

1. Patty and Selma both work at the DMV. When Patty helps a customer, she always finishes in exactly 10 minutes. When Selma helps a costumer, the amount of time it takes has an Exponential distribution with mean 10 minutes (so the rate is $\lambda=0.1$ customers per minute). Suppose you walk into the DMV at some random time and see that both Patty and Selma are helping customers. Let X be the amount of time until Patty finishes with her customer and Y be the amount of time until Selma finishes with hers.
(a) What are the probability distributions for X and Y ?
(b) Find $P(X \leq Y)$.
(c) Let $Z=\min (X, Y)$. Find the CDF for Z. Hint: Since X and Y are independent,

$$
P(X \geq x \text { and } Y \geq y)=P(X \geq x) P(Y \geq y)
$$

2. Suppose that X and Y are random variables with joint probability density function

$$
f(x, y)= \begin{cases}2 e^{-2 x} / x & 0 \leq x<\infty, 0 \leq y \leq x \\ 0 & \text { otherwise }\end{cases}
$$

(a) Find $E(X)$ and $E(Y)$. Hint: Use 2D LOTUS.
(b) Find $\operatorname{Cov}(X, Y)$.
3. Roll two 6 -sided dice and let F be the value of the first die and T be the total of the two dice. Find $\operatorname{Cov}(F, T)$. Hint: $T=F+S$ where S is the value of the second die.
4. An urn contains 20 balls (10 red and 10 blue). Suppose you draw a sample of 4 balls from the urn. Let R be the number of red balls and B be the number of blue balls. Find the covariance of R and B.

