\qquad
Due Friday, September 8. Be sure to show any work you needed to do. You can use a calculator or computer, but give exact (not decimal) answers when possible.

1. Suppose that 36% of families have a pet dog (but no cat), 22% of families have a pet cat (but no dog), and 8% have both a pet cat and a dog.
(a) What percent of families don't have a cat or a dog?
(b) What are the odds that a family has a pet cat?
2. If you find out that a family has a pet dog, then what are the posterior odds that they also have a cat? Also, what is the likelihood ratio for having a pet cat for families with dogs versus those without?
3. If you roll two six-sided dice, what is the conditional probability that at least one lands on 6 given that the two numbers are different?
4. A class has 6 freshman boys, 9 freshman girls, and 8 sophomore boys. How many sophomore girls would have to be in the class in order for gender and class to be independent?
5. A flush in poker is when 5 cards all have the same suit (hearts, diamonds, clubs, or spades).
(a) Find the probability that a random 5 -card hand from a deck of 52 playing cards is a flush.
(b) Find the conditional probability that a random 5-card hand is a straight flush given that it is a flush. A straight flush is when the cards all have the same suit and form an unbroken sequence of ranks (for example, 7-8-9-10-Jack). The ranks are ordered 2 (low), 3, 4, 5, 6, 7, 8, 9, 10, jack, queen, king, ace (high).
6. Let A, B, and C be events. If $P(A \mid C)>P(B \mid C)$ and $P\left(A \mid C^{c}\right)>P\left(B \mid C^{c}\right)$, prove that $P(A)>P(B)$. Hint: Use the Law of Total Probability (Theorem 2.3.6 in the book).
7. An event B carries negative information about A, we write $B \searrow A$, if $P(A \mid B) \leq P(A)$. For each of the following statements, prove or give a counterexample:
(a) If $B \searrow A$, then $A \searrow B$.
(b) If $A \searrow B$ and $B \searrow C$, then $A \searrow C$.
