Due Friday, September 29. Be sure to show any work you needed to do. You can use a calculator or computer, but give exact (not decimal) answers when possible.

1. Two balls are randomly selected from an urn containing 4 red, 3 blue, and 2 gray balls. Suppose that we win $\$ 2$ for each blue ball, but lose $\$ 1$ for each red ball, and gray balls don't win or lose anything. Let X denote our total winnings. Find $E(X)$. This is the same situation as problem 1 from HW4.
2. An elementary school has 4 bus routes. Bus 1 has 40 students, bus 2 has 30 , bus 3 has 25 , and bus 4 has 45 students. If you randomly select one of the students who rides a bus, let X be the number of students who ride their bus. If you randomly select one of the bus drivers, let Y be the number of students who ride their bus. What are $E(X)$ and $E(Y)$? Why does it make sense that $E(X)$ and $E(Y)$ are different?
3. A volunteer needs to collect 5 signatures for a ballot initiative. Assume that each person the volunteer asks has an independent 40% chance to sign the proposal. Let X be the number of people they talk to fill their quota of signatures.
(a) Find $P(X=8)$.
(b) Find $E(X)$.
4. Find $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$ for the random variables X and Y from the problem about school buses.
5. Suppose Z is a random variable with $E(Z)=1$ and $\operatorname{Var}(Z)=3$. Find
(a) $\operatorname{Var}(4+3 Z)$.
(b) $E\left((2+Z)^{2}\right)$. Hint: Use the fact that $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$.
6. An urn has 5 red and 5 blue balls. Suppose you take two balls from the urn. If they have the same color, you win $\$ 3$, otherwise you lose $\$ 2$. Find the expected value and variance for this game.
7. If $Y \sim \operatorname{Geom}(p)$, prove that $P(Y=n+k \mid Y>n)=P(Y=k)$.
