1. About 200,000 Americans are hospitalized for the flu each year, on average. If we assume that the number 200,000 is the population mean of the random variable X which represents the number of people who will need hospitalization for the flu in a given year, then what does Markov's inequality say about the probability of having a year where more than 1% of the U.S. population needs hospitalization for the flu? The population of the U.S. is currently 320 million people.
2. Suppose that a random variable X has mean and variance both equal to 40 . What can you say about $P(X \geq 80)$?
3. Suppose that X is a random variable with mean μ and variance σ^{2}. Show that

$$
P(|X-\mu| \geq k \sigma) \leq \frac{1}{k^{2}}
$$

for any $k>0$. How does this compare with the 68-95-99.7 rule for the normal distribution? (For a normal random variable, roughly 68% of the results are within 1 standard deviation of the mean, 95% are within 2 standard deviations, and 99.7% are within 3 standard deviations.)
4. Let X_{1}, \ldots, X_{20} be independent Poisson random variables with mean $\lambda=2$. Use the Markov inequality to obtain a bound on

$$
P\left(\sum_{i=1}^{20} X_{i}>30\right)
$$

5. Suppose a state lottery sells 500 million lottery tickets each year, and suppose each ticket earns the state $\$ 1$ on average, but with a standard deviation of $\$ 16$. The state can be 99% certain that it will make at least how much money on the lottery?
