We say that a collection of n random variables $\left(X_{1}, \ldots, X_{n}\right)$ has a multivariate normal distribution if they have a joint probability density function f defined for $x \in \mathbb{R}^{n}$ by

$$
f(x)=\frac{1}{(2 \pi)^{n / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) .
$$

Here $\mu=E(X)=\left(E\left(X_{1}\right), \ldots, E\left(X_{n}\right)\right)$ is the vector of expected values, and

$$
\Sigma=\left[\begin{array}{ccc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\vdots & \ddots & \vdots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{n}, X_{n}\right)
\end{array}\right]
$$

is the covariance matrix.

Fact 1. Suppose that $X=\left(X_{1}, \ldots, X_{n}\right)$ has a multivariate normal (MVN) distribution with means $\mu=\left(\mu_{1}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n}$ and covariance matrix Σ. Let $A \in \mathbb{R}^{m \times n}$ be any m-by- n matrix and $c \in \mathbb{R}^{n}$ be a vector. If Y is an affine linear transformation of X given by

$$
Y=A X+c,
$$

then Y has a multivariate normal distribution with means $\mu_{Y}=A \mu+c$ and covariance $\operatorname{matrix} \Sigma_{Y}=A \Sigma A^{T}$.

Fact 2. Suppose $X=\left(X_{1}, \ldots, X_{n}\right)$ has a multivariate normal distribution. Let $a=$ $\left(a_{1}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$ be vectors in \mathbb{R}^{n}. Then

$$
\operatorname{Cov}\left(a^{T} X, b^{T} X\right)=a^{T} \Sigma b
$$

and the random variables $a^{T} X$ and $b^{T} X$ are independent if and only if $a^{T} \Sigma b=0$.

Exercises

1. Suppose that $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ are i.i.d., normal random variables with mean μ and variance σ^{2}. What is the covariance matrix Σ for these variables?
2. Suppose that X_{1}, X_{2}, X_{3} are independent, $\operatorname{Normal}(0,1)$ random variables. Find the covariance matrix and joint density function for Y_{1}, Y_{2}, and Y_{3} given by:

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 1 & -2 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

3. Suppose that X_{1}, \ldots, X_{n} have a MVN distribution with means μ and covariance matrix Σ. Show that any subset of the variables $\left(X_{1}, \ldots, X_{n}\right)$ also has a MVN distribution.
4. Prove Fact 2 using Fact 1.
5. Let $\bar{x}=\frac{1}{n}\left(X_{1}+\ldots+X_{n}\right)$ where X_{1}, \ldots, X_{n} are i.i.d. Normal random variables. Show that \bar{x} and $X_{1}-\bar{x}$ are independent.
