Math 422 - Week 4 Homework

Due Monday, Feb 19

We say that a collection of n random variables (X_1, \ldots, X_n) has a **multivariate normal** distribution if they have a joint probability density function f defined for $x \in \mathbb{R}^n$ by

$$f(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right).$$

Here $\mu = E(X) = (E(X_1), \dots, E(X_n))$ is the vector of expected values, and

$$\Sigma = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \dots & \operatorname{Cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \dots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$$

is the covariance matrix.

Fact 1. Suppose that $X = (X_1, \ldots, X_n)$ has a multivariate normal (MVN) distribution with means $\mu = (\mu_1, \ldots, \mu_n) \in \mathbb{R}^n$ and covariance matrix Σ . Let $A \in \mathbb{R}^{m \times n}$ be any *m*-by-*n* matrix and $c \in \mathbb{R}^n$ be a vector. If Y is an affine linear transformation of X given by

$$Y = AX + c,$$

then Y has a multivariate normal distribution with means $\mu_Y = A\mu + c$ and covariance matrix $\Sigma_Y = A\Sigma A^T$.

Fact 2. Suppose $X = (X_1, \ldots, X_n)$ has a multivariate normal distribution. Let $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ be vectors in \mathbb{R}^n . Then

$$\operatorname{Cov}(a^T X, b^T X) = a^T \Sigma b$$

and the random variables $a^T X$ and $b^T X$ are independent if and only if $a^T \Sigma b = 0$.

Exercises

- 1. Suppose that (X_1, X_2, \ldots, X_n) are i.i.d., normal random variables with mean μ and variance σ^2 . What is the covariance matrix Σ for these variables?
- 2. Suppose that X_1, X_2, X_3 are independent, Normal(0, 1) random variables. Find the covariance matrix and joint density function for Y_1, Y_2 , and Y_3 given by:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 1 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}.$$

- 3. Suppose that X_1, \ldots, X_n have a MVN distribution with means μ and covariance matrix Σ . Show that any subset of the variables (X_1, \ldots, X_n) also has a MVN distribution.
- 4. Prove Fact 2 using Fact 1.
- 5. Let $\bar{x} = \frac{1}{n}(X_1 + \ldots + X_n)$ where X_1, \ldots, X_n are i.i.d. Normal random variables. Show that \bar{x} and $X_1 \bar{x}$ are independent.