For sample data $\left(x_{1}, \ldots, x_{n}\right)$ and $\left(y_{1}, \ldots, y_{n}\right)$, the correlation between x and y is

$$
r=\frac{(x-\bar{x})^{T}(y-\bar{y})}{\|x-\bar{x}\|\|y-\bar{y}\|}
$$

The least squares solution of an inconsistent linear equation $X \beta=y$ is given by solving $\left(X^{T} X\right) \hat{\beta}=X^{T} y$. If the columns of X are linearly independent, then $X^{T} X$ is invertible and

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y .
$$

Problems

1. Use a computer to find the least squares solutions of $X \beta=y$ for the following matrices.
(a) $X=\left[\begin{array}{cc}-1 & 2 \\ 2 & -3 \\ -1 & 3\end{array}\right], y=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$
(b) $X=\left[\begin{array}{ccc}1 & -3 & -3 \\ 1 & 5 & 1 \\ 1 & 7 & 2\end{array}\right], y=\left[\begin{array}{c}5 \\ -3 \\ 5\end{array}\right]$
(c) $X=\left[\begin{array}{lll}1 & 3 & 5 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 3 & 3\end{array}\right], y=\left[\begin{array}{c}3 \\ 5 \\ 7 \\ -3\end{array}\right]$
2. Suppose that $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ are points in a scatterplot. Use the formula for correlation above to show that if all of these points are on a line $y=m x+b$ with positive slope, then the correlation is one. Hint: if you think of x and y as vectors, then $y=m x+b \mathbb{1}$. Also, $\bar{x}=\frac{1}{n} x^{T} \mathbb{1}$.
3. Suppose an object is thrown off of a tall cliff (200 meters tall) and the elevation of the object above the ground is measured each second as it falls (see table below). Find the coefficients β_{i} of the parabola that best predicts the height of the object as a function of time $y=\beta_{0}+\beta_{1} t+\beta_{2} t^{2}$. In particular, what is the initial vertical velocity and the acceleration of the object?

Time (seconds)	Elevation (meters)
0	200.0
1	205.3
2	200.2
3	185.5
4	161.5
5	127.3
6	83.5
7	29.8

