Math 422-Homework 8

1. Suppose that I three six-sided dice. The first die is normal, the second die is loaded so that it lands on a six 24% of the time, on a one only 12% of the time, and the other four outcomes are all equally likely (16% each). The third die is not loaded, but it only has the numbers 1 through 5 , the space where the six should be is blank (counts as zero). Let the parameter θ denote which of the three dice I roll.
(a) Suppose that I pick a die and roll it. If I get a 3, what is the likelyhood function for θ ?
(b) What if I get a 6? What is the likelyhood function for θ in that case.
(c) For both of the previous outcomes, compute the posterior distribution based on the uniform prior $\pi(\theta)=\frac{1}{3}$.
(d) What is the most likely value of θ in each case above?
2. Suppose you toss a coin and put a Uniform $([0.4,0.6])$ prior on θ, the probability of getting a head on a single toss.
(a) If you toss the coin n times and obtain n heads, then determine the posterior density of θ.
(b) Suppose the true value of θ is actually 0.9 . Will the posterior distribution ever put any probability mass around $\theta=0.9$ for any sample results?
(c) What do you conclude from part (b) about how you should choose your prior?
3. Suppose that we take a random sample from a normally distributed population that has variance $\sigma_{0}^{2}=1$, but we don't know the mean μ. We assume a normal prior distribution for μ with mean 0 and variance 4 . If we take a sample of size 25 and our sample mean is $\bar{x}=0.7$, then what is the posterior probability that $\mu>0$?
4. Suppose that $\left(x_{1}, \ldots, x_{n}\right)$ is a random sample from the uniform distribution on $[0, \theta]$. You don't know the parameter θ, so you start with a $\operatorname{Gamma}(\alpha, \lambda)$ prior distribution for θ.
(a) What is the likelyhood function for θ given the values of x_{1}, \ldots, x_{n} ?
(b) What is the posterior distribution for θ ?
