Math 422 - Homework 8

Due Friday, April 6

- 1. Suppose that I three six-sided dice. The first die is normal, the second die is loaded so that it lands on a six 24% of the time, on a one only 12% of the time, and the other four outcomes are all equally likely (16% each). The third die is not loaded, but it only has the numbers 1 through 5, the space where the six should be is blank (counts as zero). Let the parameter θ denote which of the three dice I roll.
 - (a) Suppose that I pick a die and roll it. If I get a 3, what is the likelyhood function for θ ?
 - (b) What if I get a 6? What is the likelyhood function for θ in that case.
 - (c) For both of the previous outcomes, compute the posterior distribution based on the uniform prior $\pi(\theta) = \frac{1}{3}$.
 - (d) What is the most likely value of θ in each case above?
- 2. Suppose you toss a coin and put a Uniform([0.4, 0.6]) prior on θ , the probability of getting a head on a single toss.
 - (a) If you toss the coin n times and obtain n heads, then determine the posterior density of θ .
 - (b) Suppose the true value of θ is actually 0.9. Will the posterior distribution ever put any probability mass around $\theta = 0.9$ for any sample results?
 - (c) What do you conclude from part (b) about how you should choose your prior?
- 3. Suppose that we take a random sample from a normally distributed population that has variance $\sigma_0^2 = 1$, but we don't know the mean μ . We assume a normal prior distribution for μ with mean 0 and variance 4. If we take a sample of size 25 and our sample mean is $\bar{x} = 0.7$, then what is the posterior probability that $\mu > 0$?
- 4. Suppose that (x_1, \ldots, x_n) is a random sample from the uniform distribution on $[0, \theta]$. You don't know the parameter θ , so you start with a $\text{Gamma}(\alpha, \lambda)$ prior distribution for θ .
 - (a) What is the likelyhood function for θ given the values of x_1, \ldots, x_n ?
 - (b) What is the posterior distribution for θ ?