Math 422-Homework 9

1. Suppose that whether or not it rains tomorrow only depends the last two days. If it rained both today and yesterday, then there is an 80% chance that it will rain tomorrow. If it rained today, but not yesterday, then there is a 50% chance that it will rain tomorrow. If it rained yesterday, but not today, then there is a 10% chance that it will rain tomorrow. Finally, if it did not rain either today or yesterday, then there is a 20% chance that it will rain tomorrow.
(a) Draw a graph showing the states and the transition probabilities for a Markov chain that models this situation. Hint: The states in this Markov chain are the weather over two consecutive days, not just the weather on one day.
(b) Is this Markov chain irreducible? How can you tell?
(c) Over time, in what percent of days does it rain?
2. Show that if the transition matrix P for a Markov chain is symmetric (i.e., $P^{T}=P$), then the vector $\left(\frac{1}{n}, \ldots, \frac{1}{n}\right)$ is a stationary probability vector for the Markov chain.
3. Suppose that a car rental company has four locations (called them locations 1, 2, 3, and 4). Rented cars can be returned to any of the four locations. Suppose that the probability a car that is rented from location j is returned to location i is given by the entries $p_{i j}$ of the matrix:

$$
P=\left[\begin{array}{cccc}
0.8 & 0.1 & 0.2 & 0 \\
0.1 & 0.7 & 0.1 & 0.2 \\
0 & 0.2 & 0.5 & 0.1 \\
0.1 & 0 & 0.2 & 0.7
\end{array}\right]
$$

(a) A car is currently at location 3. What is the probability that this car will be back at location 3 after it is rented 5 times?
(b) After a car has been rented many many times, what is the probability distribution for its location?
4. The birthday problem is a famous problem in probability theory. It asks: "How many people need to be in a room before there are even odds that at least two people in the room have the same birthday?" You can use a Markov chain to model the birthday problem. Let the state of the Markov chain be the number of different birthdays that a group of people in a room have. When a new person enters the room, the state will transition to a higher value if the new person has a birthday that is different from everyone else, otherwise it will stay the same. Because the state can be anywhere from 1 to 365 (if you ignore leap years), the transition matrix is too big to write down on paper. Instead, find a formula for the entry $p_{i j}$ in row i and column j of the transition matrix, as a (piecewise) function of i and j.

