One-Sample t-Test

Answers a yes/no question about a population mean μ . Tests whether there is statistically significant evidence that the population mean μ is different from μ_0 .

$$t = \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \qquad H_0: \ \mu = \mu_0 \\ H_A: \ \mu \neq \mu_0$$
• \bar{x} is the sample mean
• μ_0 comes from the null hypothesis to the sample size.

• μ_0 comes from the null hypothesis

• s is the sample standard deviation • n is the sample size

Steps

1. Make hypotheses. The null hypothesis H_0 is a specific statement about the population mean. The alternative hypothesis H_A can be one-sided if you have prior knowledge or two-sided if you aren't sure. Don't use sample data to make hypotheses!

2. Calculate t-value. Use the formula.

3. Find the p-value. Use the Probability Distributions app. Degrees of freedom (df or ν) is n-1.

4. Explain what it means. The lower the p-value, the more statistically significant the result is. Here are some common significance levels people use.

• Moderate (p < 5%). Moderate evidence that the null hypothesis is wrong.

• Strong (p < 1%). Strong evidence that the null hypothesis is wrong.

• Very Strong (p < 0.1%). Very strong evidence that the null hypothesis is wrong.

If p > 5%, then the evidence is too weak to reject H_0 , but that doesn't mean we accept H_0 . It just means our results are not statistically significant. The observed difference between \bar{x} and μ_0 could just be due to random chance.

Assumptions

These are the same as with a **one sample t-confidence interval**.