Two-Sample *t*-Test

Answers a yes/no question about the means μ_A and μ_B of two different populations. Lets you decide if there is statistically significant evidence that μ_A and μ_B are different.

$f_{t} = \bar{x}_A - \bar{x}_B$	$H_0: \mu_A = \mu_B$
$\iota = rac{1}{\sqrt{rac{s_A^2}{n_A} + rac{s_B^2}{n_B}}}$	$H_A: \mu_A \neq \mu_B$
• \bar{x}_A, \bar{x}_B are the sample means • s_A, s_B are the sample standard deviations	• n_A, n_B are the sample sizes

Steps

These are exactly the same as the steps for a **one sample** *t***-test**, except that the degrees of freedom (df or ν) will be the smaller sample size minus one, i.e., either $n_A - 1$ or $n_B - 1$.

Two-Sample *t*-Confidence Interval

Estimates the difference between two population means μ_A and μ_B . We can be confident that the true gap $\mu_A - \mu_B$ is between the upper and lower bound from the formula.

$\bar{x}_A - \bar{x}_B \pm t^* \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}$	
 \$\bar{x}_A, \bar{x}_B\$ are the sample means \$n_A, n_B\$ are the sample sizes 	 s_A, s_B are the sample standard deviations t[*] is the critical t-value

How to Get the Critical *t*-Value

Use the **t-Distribution Table** exactly the same as for a **one sample t-confidence interval**, except use the smaller sample size to find the degrees of freedom. So $df = n_A - 1$ or $n_B - 1$, whichever is smaller.

Assumptions

The assumptions for both two sample t-tests and t-confidence intervals are almost exactly the same as the one sample t-distribution methods.

- 1. Randomness Both samples are simple random samples from large populations (no sample bias).
- 2. Normality Both populations have a normal distribution.

The normality assumption gets less important as the sample sizes get bigger. Two sample *t*-distribution methods are even more robust than one sample methods. You can add the two sample sizes together to decide if you have large $(n_A + n_B \ge 30)$, or small $(n_A + n_B < 30)$ samples.