Suppose that $X \sim \operatorname{Binom}(5, p)$. For example, maybe X represents a random sample of 5 observations from a large population, and p is the probability of a "success".

1. What is the likelihood function for p if $X=4$?
2. If we start with a $\operatorname{Unif}(0,1)$ prior distribution for p, then the posterior distribution will be proportional to the likelihood function on the interval from $p=0$ to $p=1$. What is the integral of the likelihood function on this interval?
3. Show that the posterior distribution for p given that $X=4$ is $30 p^{4}(1-p)$. That is, show that the posterior distribution is proportional to $p^{4}(1-p)$ and the right proportionality constant is 30 .

Notation: For any unknown parameter θ, we will use $\pi(\theta)$ to represent the prior distribution and $\pi(\theta \mid s)$ to represent the posterior distribution for θ given a sample s. So the posterior distribution in the example above is would be written like this:

$$
\pi(p \mid X=4)= \begin{cases}30 p^{4}(1-p) & p \in 0 \leq p \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

This probability distribution is an example of a beta distribution. The PDF for a beta distribution has two (positive) parameters α and β, and the formula is:

$$
f(x)=C x^{\alpha-1}(1-x)^{\beta-1}
$$

when $x \in[0,1]$, and zero otherwise. The constant C is whatever value makes the area under the curve equal to one. In the example above: $\alpha=5$ and $\beta=2$.
4. Use Desmos to graph the beta distribution for different values of α and β. What happens to the shape if α and β are equal? What happens to the shape as α and β both get bigger? What happens to the shape if only one of α or β is big?
5. Beta distributions are very useful in Bayesian statistics because if p is the unknown parameter for a binomial distribution and you start with a beta distribution as your prior, you always end up with a beta distribution for your posterior. Show this. Suppose $X \sim \operatorname{Binom}(n, p)$ for some fixed n and unknown p. Suppose we start with a prior distribution $\pi(p) \propto p^{\alpha-1}(1-p)^{\beta-1}$. Show that the posterior distribution $\pi(p \mid X=k)$ has a beta distribution no matter what k is.

