Suppose you are studying a population with a roughly normal distribution. You want to use a sample of n individuals x_{1}, \ldots, x_{n} to estimate the population mean μ. To keep things simple, let's assume that you know the population standard deviation is σ_{0}. The following theorem tells you everything you need to know to do a Bayesian analysis.

Theorem. If a population has a $\operatorname{Norm}\left(\mu, \sigma_{0}\right)$ distribution with σ_{0} known, and we use a normal distribution $\operatorname{Norm}\left(\mu_{0}, \tau_{0}\right)$ as the prior distribution for μ, then the posterior distribution for μ is also normally distributed. The mean of the posterior distribution is

$$
\frac{\alpha}{\alpha+\beta} \mu_{0}+\frac{\beta}{\alpha+\beta} \bar{x}
$$

and the standard deviation is

$$
\sqrt{\frac{1}{\alpha+\beta}}
$$

where

$$
\alpha=\frac{1}{\tau_{0}^{2}} \quad \text { and } \quad \beta=\frac{n}{\sigma_{0}^{2}} \text {. }
$$

You can find a proof of this theorem in Example 7.1.2 of Evans and Rosenthal.

1. Last year, I collected data from 47 students in my introductory statistics class at HampdenSydney and their average height was $\bar{x}=71.85$ inches. Heights for all men in the United States have approximately the $\operatorname{Norm}(70,3)$ distribution. I'd like to estimate the population mean height for all Hampden-Sydney students. I figure that the average Hampden-Sydney student is pretty close to the average for all men in the United States, so I might choose a prior distribution with mean 70 and standard deviation of just 1 inch (so $\mu_{0}=70$ and $\tau_{0}=1$). One way to think of this prior is that you are assuming Hampden-Sydney students are close to the average for men, but you wouldn't be surprised if the HSC average is 1 or 2 inches higher or lower. Use this information to find the posterior distribution for μ.
2. According to the posterior distribution, what is the probability that the average height of Hampden-Sydney students is taller than the average for all men in the United States?
3. Find a 95% credible interval for the average height of all Hampden-Sydney students. Hint: To make a 95% credible interval using a normal posterior, just add and subtract 1.96 times the posterior standard deviation from the posterior mean.
4. What if we had started with a ridiculous prior that the average height of Hampden-Sydney students is around 7 ft tall $\left(\mu_{0}=84\right)$? If we also increased the standard deviation of the prior τ_{0} to 12 inches to reflect greater uncertainty, then what would the 95% credible interval be?
5. A general formula for a credible interval in this example is

$$
\frac{\alpha}{\alpha+\beta} \mu_{0}+\frac{\beta}{\alpha+\beta} \bar{x} \pm z^{*} \sqrt{\frac{1}{\alpha+\beta}}
$$

where $\alpha=1 / \tau_{0}^{2}$ and $\beta=n / \sigma_{0}^{2}$ and z^{*} is determined by the credibility level. What happens to this formula if τ_{0} is really large (i.e., what is the limit as $\tau_{0} \rightarrow \infty$)?

