In a logistic regression model, there are one or more explanatory variables denoted $x$, and one binary response variable $y$. The logistic regression model gives a linear function for estimating the $\log$-odds that $y$ is a success, based on the value of $x$.

$$
\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} x
$$

1. Suppose that the predicted value of the log-odds is 2 , that is: $\log \left(\frac{p}{1-p}\right)=2$. Solve for $p$. More generally, how do you invert the formula to convert any log-odds $L$ into the probability $p$ ?

The least squares method doesn't work with logistic regression. Instead, we think of each y-value as being a random variable that can be either a success (i.e., $Y=1$ ) or a failure $(Y=0)$. This is a simple binomial distribution with $n=1$. The parameter $p$ in the distribution is: $p=\frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}$, so our statistical model is:

$$
Y \sim \operatorname{Binom}\left(1, \frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}\right)
$$

In this model, we think of $\beta_{0}$ and $\beta_{1}$ as the parameters, and $x$ is a fixed value that comes from the data. Recall that the PMF for this binomial distribution is $f(y)=p^{y}(1-p)^{1-y}$.
2. What is the log-likelihood function for $\beta_{0}$ and $\beta_{1}$ if $y=1$ ? What is the log-likelihood function if $y=0$ ?
3. What is the log-likelihood function if you have the following three data points? You just need to add the three log-likelihood functions.

| $x$ | $y$ |
| :--- | :--- |
| 0 | 0 |
| 1 | 0 |
| 4 | 1 |

4. Find the two partial derivatives of the log-likelihood function.

The equations for when the partial derivatives equal zero are typically too hard to solve without a computer. There are lots of numerical algorithms to find the critical point, however. In the homework, I've given you a problem using R to find the maximum likelihood estimate for $\beta_{0}$ and $\beta_{1}$.

