Logistic Regression

Math 422 - Workshop
In a logistic regression model, there are one or more explanatory variables denoted x, and one binary response variable y. The logistic regression model gives a linear function for estimating the log-odds that y is a success, based on the value of x.

$$
\log \left(\frac{p}{1-p}\right)=\beta_{0}+\beta_{1} x
$$

1. Suppose that the predicted value of the log-odds is 2 , that is: $\log \left(\frac{p}{1-p}\right)=2$. Solve for p. More generally, how do you invert the formula to convert any log-odds L into the probability p ?

Solution: If $L=\log \left(\frac{p}{1-p}\right)$, then

$$
\exp (L)=\frac{p}{1-p}
$$

After cross-multiplying and collecting like-terms, you should get:

$$
p=\frac{\exp (L)}{1+\exp (L)}
$$

So when $L=2, p=88.1 \%$.

The least squares method doesn't work with logistic regression. Instead, we think of each y-value as being a random variable that can be either a success (i.e., $Y=1$) or a failure $(Y=0)$. This is a simple binomial distribution with $n=1$. The parameter p in the distribution is: $p=\frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}$, so our statistical model is:

$$
Y \sim \operatorname{Binom}\left(1, \frac{\exp \left(\beta_{0}+\beta_{1} x\right)}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}\right)
$$

In this model, we think of β_{0} and β_{1} as the parameters, and x is a fixed value that comes from the data. Recall that the PMF for this binomial distribution is $f(y)=p^{y}(1-p)^{1-y}$.
2. What is the log-likelihood function for β_{0} and β_{1} if $y=1$? What is the log-likelihood function if $y=0$?

Solution: If $y=1$:

$$
\begin{aligned}
\log L\left(\beta_{0}, \beta_{1} \mid y=1\right) & =\log \left(p^{y}(1-p)^{1-y}\right) \\
& =\log (p) \\
& =\beta_{0}+\beta_{1} x-\log \left(1+\exp \left(\beta_{0}+\beta_{1} x\right)\right)
\end{aligned}
$$

If $y=0$:

$$
\begin{aligned}
\log L\left(\beta_{0}, \beta_{1} \mid y=0\right) & =\log \left(p^{y}(1-p)^{1-y}\right) \\
& =\log (1-p) \\
& =\log \left(\frac{1}{1+\exp \left(\beta_{0}+\beta_{1} x\right)}\right) \\
& =-\log \left(1+\exp \left(\beta_{0}+\beta_{1} x\right)\right)
\end{aligned}
$$

3. What is the log-likelihood function if you have the following three data points? You just need to add the three log-likelihood functions.
```
\begin{tabular}{l|l}
\(x\) & \(y\) \\
\hline 0 & 0
\end{tabular}\(\quad\) Likelihood function for this data: \(L\left(\beta_{0}, \beta_{1}\right)=-\log \left(1+\exp \left(\beta_{0}\right)\right)\)
\(10 \longleftarrow\) Likelihood function for this data: \(L\left(\beta_{0}, \beta_{1}\right)=-\log \left(1+\exp \left(\beta_{0}+\beta_{1}\right)\right)\)
\begin{tabular}{l|l}
4 & 1
\end{tabular}
                            Likelihood function for this data: \(L\left(\beta_{0}, \beta_{1}\right)=\beta_{0}+4 \beta_{1}-\log \left(1+\exp \left(\beta_{0}+4 \beta_{1}\right)\right)\)
```


Solution:

$$
\log L\left(\beta_{0}, \beta_{1}\right)=-\log \left(1+\exp \left(\beta_{0}\right)\right)-\log \left(1+\exp \left(\beta_{0}+\beta_{1}\right)\right)+\beta_{0}+4 \beta_{1}-\log \left(1+\exp \left(\beta_{0}+4 \beta_{1}\right)\right)
$$

4. Find the two partial derivatives of the log-likelihood function.

Solution:

$$
\begin{gathered}
\frac{\partial \log L\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{0}}=-\frac{\exp \left(\beta_{0}\right)}{1+\exp \left(\beta_{0}\right)}-\frac{\exp \left(\beta_{0}+\beta_{1}\right)}{1+\exp \left(\beta_{0}+\beta_{1}\right)}+1-\frac{\exp \left(\beta_{0}+4 \beta_{1}\right)}{1+\exp \left(\beta_{0}+4 \beta_{1}\right)} \\
\frac{\partial \log L\left(\beta_{0}, \beta_{1}\right)}{\partial \beta_{1}}=-\frac{\exp \left(\beta_{0}+\beta_{1}\right)}{1+\exp \left(\beta_{0}+\beta_{1}\right)}+4-4 \frac{\exp \left(\beta_{0}+4 \beta_{1}\right)}{1+\exp \left(\beta_{0}+4 \beta_{1}\right)}
\end{gathered}
$$

The equations for when the partial derivatives equal zero are typically too hard to solve without a computer. There are lots of numerical algorithms to find the critical point, however. In the homework, I've given you a problem using R to find the maximum likelihood estimate for β_{0} and β_{1}.

